Newer
Older
/*
* PeTrack - Software for tracking pedestrians movement in videos
* Copyright (C) 2010-2020 Forschungszentrum Jülich GmbH,
* Maik Boltes, Juliane Adrian, Ricardo Martin Brualla, Arne Graf, Paul Häger, Daniel Hillebrand,
* Deniz Kilic, Paul Lieberenz, Daniel Salden, Tobias Schrödter, Ann Katrin Seemann
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <QtWidgets>
#include <QFileDialog>
#include <QMessageBox>
#include "extrCalibration.h"
#include "petrack.h"
#include "control.h"
using namespace std;
using namespace cv;
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#define MAX_AV_ERROR 20
ExtrCalibration::ExtrCalibration()
{
mMainWindow = NULL;
mControlWidget = NULL;
}
ExtrCalibration::~ExtrCalibration()
{
}
void ExtrCalibration::setMainWindow(Petrack *mw)
{
mMainWindow = mw;
mControlWidget = mw->getControlWidget();
init();
}
void ExtrCalibration::init()
{
rotation_matrix = new double[9];
translation_vector = new double[3];
translation_vector2 = new double[3];
camValues = new double[9];
distValues = new double[8];
isExtCalib = false;
}
bool ExtrCalibration::isEmptyExtrCalibFile()
{
return mExtrCalibFile.isEmpty();
}
void ExtrCalibration::setExtrCalibFile(const QString &f)
{
mExtrCalibFile = f;
}
QString ExtrCalibration::getExtrCalibFile()
{
if (!this->isEmptyExtrCalibFile())
return mExtrCalibFile;
else
return QString();
}
bool ExtrCalibration::openExtrCalibFile(){
if (mMainWindow)
{
static QString lastDir;
if (!mExtrCalibFile.isEmpty())
lastDir = QFileInfo(mExtrCalibFile).path();
QString extrCalibFile = QFileDialog::getOpenFileName(mMainWindow, Petrack::tr("Open extrinisc calibration file with point correspondences"), lastDir, "3D-Calibration-File (*.3dc);;Text (*.txt);;All supported types (*.3dc *.txt);;All files (*.*)");
if (!extrCalibFile.isEmpty())
{
mExtrCalibFile = extrCalibFile;
return loadExtrCalibFile();
}
//cout << mCalibFiles.first().toStdString() << endl; //toAscii() .data() Local8Bit().constData() << endl;
}
return false;
}
/**
* @brief Loads the extrinsic calibration from mExtrCalibFile
*
* This methods reads an extrinsic calibration in one of two formats:
* First: 3D coordinates followed by corresponding 2D coordinates
*
* x y z px py
*
* Second: Just 3D coordinates
*
* x y z
*
* It is possible to optionally start the file with the number of lines:
*
* 2
* x1 y1 z1
* x2 y2 z2
*
* This is just going to be ignored. Comments start with "#".
*
* @return
*/
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
bool ExtrCalibration::loadExtrCalibFile(){
bool all_ok = true;
if( !mExtrCalibFile.isEmpty() )
{
if( mExtrCalibFile.right(4) == ".3dc" || mExtrCalibFile.right(4) == ".txt" )
{
QFile file(mExtrCalibFile);
if( !file.open(QIODevice::ReadOnly | QIODevice::Text) )
{
QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: Cannot open %1:\n%2.").arg(mExtrCalibFile).arg(file.errorString()));
return false;
}
debout << "Reading 3D calibration data from " << mExtrCalibFile << "..." << endl;
vector<Point3f> points3D_tmp;
vector<Point2f> points2D_tmp;
QTextStream in(&file);
QString line;
int line_counter = 0, counter;
float x,y,z,px,py;
float zahl;
bool with_2D_data = false,
with_3D_data = false,
end_loop = false;
while( !in.atEnd() )
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{
// Neue Zeile einlesen
line = in.readLine();
++line_counter;
// Kommentare ueberlesen
if( line.startsWith("#",Qt::CaseInsensitive) ||
line.startsWith(";;",Qt::CaseInsensitive) ||
line.startsWith("//",Qt::CaseInsensitive) ||
line.startsWith("!",Qt::CaseInsensitive) )
continue;
// Test-Ausgabe
// debout << "line: " << line << endl;
QTextStream stream(&line);
counter = 0;
end_loop = false;
while( !stream.atEnd() && !end_loop )
{
stream >> zahl;
++counter;
switch( counter )
{
case 1:
x = zahl;
if( !with_3D_data )
{
points3D_tmp.clear();
with_3D_data = true;
}
break;
case 2:
y = zahl;
break;
case 3:
z = zahl;
break;
case 4:
px = zahl;
if( !with_2D_data )
{
points2D_tmp.clear();
with_2D_data = true;
}
break;
case 5:
py = zahl;
break;
default:
//debout << "### Error: counter=" << counter << endl;
end_loop = true;
}
}
if( counter == 1 )
{
debout << "Optional number of points in line " << line_counter << " ignored." << endl;
}else if( counter != 3 && counter != 5 )
debout << "Something wrong in line " << line_counter << "( " << line << " )! Ignored. (counter=" << counter << ")" << endl;
// 3D daten abspeichern
if( with_3D_data && (counter == 3 || counter == 5) )
{
//debout << "x: " << x << " y: " << y << " z: " << z << endl;
points3D_tmp.push_back( Point3f( x, y, z ) );
}
// 2D daten abspeichern
if( with_2D_data && counter == 5 )
{
//debout << " px: " << px << " py: " << py << endl;
points2D_tmp.push_back( Point2f( px, py ) );
}
}
// Check if there are more than 4 points for calibration in the file
if( points3D_tmp.size() < 4 )
{
QMessageBox::critical(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Error: Not enough points given: %1 (minimum 4 needed!). Please check your extrinsic calibration file!").arg(points3D_tmp.size()));
all_ok = false;
}
// Check if 2D points delivered and if the number of 2D and 3D points agree
else if( points2D_tmp.size() > 0 && points2D_tmp.size() != points3D_tmp.size() )
{
QMessageBox::critical(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Error: Unsupported File Format in: %1 (number of 3D (%2) and 2D (%3) points disagree!)").arg(mExtrCalibFile).arg(points3D_tmp.size()).arg(points2D_tmp.size()));
all_ok = false;
}
// Check if number of loaded 3D points agree with stored 2D points
else if( !with_2D_data && points2D.size()>0 && points3D_tmp.size() != points2D.size() )
{
// ask if stored 2D points should be deleted?
int result = QMessageBox::warning(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Number of 3D points (%1) disagree with number of stored 2D points (%2)!<br />The 2D points will be deleted! You have to fetch new ones from the image!").arg(points3D_tmp.size()).arg(points2D.size()),QMessageBox::Ok, QMessageBox::Abort);
if (result != QMessageBox::Ok)
all_ok = false;
else
points2D.clear();
}
if( all_ok )
{
if( with_3D_data ) points3D = points3D_tmp;
if( with_2D_data ) points2D = points2D_tmp;
}
}else
{
debout << "unsupported file extension (supported: .3dc,.txt)" << endl;
}
}else
{
// no calib_file
all_ok = false;
}
if (all_ok && !mMainWindow->isLoading())
calibExtrParams();
return all_ok;
}
/**
* @brief Uses manually set TrackPoints as 2D points for extrinsic calibration
*
* @pre loaded at least 4 3D-points
*
* @return true if calibration did take place
*/
bool ExtrCalibration::fetch2DPoints()
{
bool all_ok = true;
if( !mMainWindow->getTracker() || mMainWindow->getTracker()->size() < 4 )
{
QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: At minimum four 3D calibration points needed for 3D calibration."));
all_ok = false;
}else
{
size_t sz_2d = mMainWindow->getTracker()->size();
if( points3D.size()>0 && sz_2d != points3D.size() ){
QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Count of 2D-Points (%1) and 3D-Points (%2) disagree").arg(sz_2d).arg(points3D.size()));
all_ok = false;
}
//debout << "Marked 2D-Image-Points: " << endl;
if( all_ok )
{
points2D.clear();
for(size_t i = 0; i < sz_2d; i++)
{
//debout << "[" << i << "]: (" << mMainWindow->getTracker()->at(i).at(0).x() << ", " << mMainWindow->getTracker()->at(i).at(0).y() << ")" << endl;
// Info: Tracker->TrackPerson->TrackPoint->Vec2F
points2D.push_back(Point2f(mMainWindow->getTracker()->at(i).at(0).x(),mMainWindow->getTracker()->at(i).at(0).y()));
}
}
}
if( all_ok )
{
mMainWindow->getTracker()->clear();
calibExtrParams();
}
return all_ok;
}
/**
* @brief Saves points used for extrinsic calibration
*
* Saves the points used for extrinsic calibration in the format:
*
* n
* x y z px py
*
* With n as number of points, x,y,z as 3D coordianted and px,py as 2D coordinates.
* @return
*/
bool ExtrCalibration::saveExtrCalibPoints()
{
bool all_okay = false;
QString out_str;
QTextStream out(&out_str);
for (size_t i = 0; i < points3D.size(); ++i)
out << "[" << QString::number(i+1,'i',0) << "]: "<< QString::number(points3D.at(i).x,'f',1) << " " << QString::number(points3D.at(i).y,'f',1) << " " << QString::number(points3D.at(i).z,'f',1) << " " << QString::number(points2D.at(i).x,'f',3) << " " << QString::number(points2D.at(i).y,'f',3) << Qt::endl;
}
QMessageBox msgBox;
msgBox.setIcon(QMessageBox::Warning);
msgBox.setText("The corresponding calibration points have been changed.");
msgBox.setInformativeText("Do you want to save your changes?");
msgBox.setDetailedText(out_str);
msgBox.setStandardButtons(QMessageBox::QMessageBox::Save | QMessageBox::Cancel);
msgBox.setDefaultButton(QMessageBox::Save);
int ret = msgBox.exec();
switch (ret) {
case QMessageBox::Save:
{
// Save was clicked
QFile file(mExtrCalibFile);
if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Cannot open %1:\n%2.").arg(mExtrCalibFile).arg(file.errorString()));
return false;
}
QTextStream file_out(&file);
file_out << points3D.size() << Qt::endl;
for (size_t i = 0; i < points3D.size(); ++i)
file_out << points3D.at(i).x << " " << points3D.at(i).y << " " << points3D.at(i).z << " " << points2D.at(i).x << " " << points2D.at(i).y << Qt::endl;
}
all_okay = file.flush();
file.close();
break;
}
case QMessageBox::Discard:
// Don't Save was clicked
break;
case QMessageBox::Cancel:
// Cancel was clicked
break;
default:
// should never be reached
break;
}
return all_okay;
}
bool ExtrCalibration::isSetExtrCalib(){
// bool isSetExtrCalib = false;
//
// if( mControlWidget->getCalibExtrRot1() != 0.00 &&
// mControlWidget->getCalibExtrRot2() != 0.00 &&
// mControlWidget->getCalibExtrRot3() != 0.00 &&
// mControlWidget->getCalibExtrTrans1() != 0.00 &&
// mControlWidget->getCalibExtrTrans2() != 0.00 &&
// mControlWidget->getCalibExtrTrans3() != 0.00 )
// {
// isSetExtrCalib = true;
// }
/**
* @brief Extrinsic calibration with help of cv::solvePnP
*/
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
void ExtrCalibration::calibExtrParams()
{
if( !points3D.empty() && !points2D.empty() && points2D.size() == points3D.size() )
{
int bS = mMainWindow->getImageBorderSize();
/* Create Camera-Matrix form Camera-Params in the Petrack-GUI */
Mat camMat = (Mat_<double>(3,3) <<
mControlWidget->fx->value(), 0, mControlWidget->cx->value()-bS,
0, mControlWidget->fy->value(), mControlWidget->cy->value()-bS,
0, 0, 1);
/* Distortion Params must be 0 because only undistorted images are supported */
// if( mControlWidget->r2->value() != 0 || mControlWidget->r4->value() != 0
// || mControlWidget->tx->value() != 0 || mControlWidget->ty->value() != 0 )
// {
// QMessageBox::warning(mMainWindow, "Petrack",
// "The distortion Parameters are set!\n"
// "The 3D Camera-Calibration is implemented only for images without distortion.\n"
// "There is no waranty of correct results!",
// QMessageBox::Ok,QMessageBox::Ok);
// }
Mat distMat = (Mat_<double>(8,1) <<
0,//mControlWidget->r2->value(),
0,//mControlWidget->r4->value(),
0,//mControlWidget->tx->value(),
0,//mControlWidget->ty->value(),
// r^>4 not supported
0,//mControlWidget->r6->value(),
0,//mControlWidget->k4->value(),
0,//mControlWidget->k5->value(),
0//mControlWidget->k6->value()
);
/* Create Mat-objects of point correspondences */
Mat op(points3D);
Mat ip(points2D);
//cout << "3D Punkte: " << endl << " " << format(points3D,"csv") << endl;
//cout << "2D Punkte: " << endl << " " << format(points2D,"csv") << endl;
/* Mat-objects for result rotation and translation vectors */
Mat rvec(3,1,CV_64F),/*,0),*/ tvec(3,1,CV_64F);//,0);
// Solve the PnP-Problem to calibrate the camera to its environment
solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_ITERATIVE);
//bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_P3P); // Requires exactly 4 points
//bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_EPNP);
//bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_DLS);
//bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_UPNP);
//bool solvePNPsuccess = true;
//solvePnPRansac(op,ip,camMat,distMat,rvec,tvec);
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
// debout << "The solvePNP-Method " << (solvePNPsuccess ? "" : "doesn't ") << "worked. " << solvePNPsuccess << endl;
// void decomposeProjectionMatrix(InputArray projMatrix,
// OutputArray cameraMatrix,
// OutputArray rotMatrix,
// OutputArray transVect,
// OutputArray rotMatrixX=noArray(),
// OutputArray rotMatrixY=noArray(),
// OutputArray rotMatrixZ=noArray(),
// OutputArray eulerAngles=noArray() );
// debout << "Rotation:" << endl;
// debout << rvec.at<double>(0,0) << ", " << rvec.at<double>(1,0) << ", " << rvec.at<double>(2,0) << endl;
// debout << rvec.at<double>(0,0) << ", " << rvec.at<double>(0,1) << ", " << rvec.at<double>(0,2) << endl;
// debout << "Translation:" << endl;
// debout << tvec.at<double>(0,0) << ", " << tvec.at<double>(1,0) << ", " << tvec.at<double>(2,0) << endl;
// debout << tvec.at<double>(0,0) << ", " << tvec.at<double>(0,1) << ", " << tvec.at<double>(0,2) << endl;
Mat rot_mat(3,3,CV_64F);//, 0);
// Transform the rotation vector into a rotation matrix with opencvs rodrigues method
Rodrigues(rvec,rot_mat);
rotation_matrix[0] = rot_mat.at<double>(0,0);
rotation_matrix[1] = rot_mat.at<double>(0,1);
rotation_matrix[2] = rot_mat.at<double>(0,2);
rotation_matrix[3] = rot_mat.at<double>(1,0);
rotation_matrix[4] = rot_mat.at<double>(1,1);
rotation_matrix[5] = rot_mat.at<double>(1,2);
rotation_matrix[6] = rot_mat.at<double>(2,0);
rotation_matrix[7] = rot_mat.at<double>(2,1);
rotation_matrix[8] = rot_mat.at<double>(2,2);
translation_vector[0] = tvec.at<double>(0,0);
translation_vector[1] = tvec.at<double>(0,1);
translation_vector[2] = tvec.at<double>(0,2);
translation_vector2[0] =
rotation_matrix[0] * translation_vector[0] +
rotation_matrix[3] * translation_vector[1] +
rotation_matrix[6] * translation_vector[2];
translation_vector2[1] =
rotation_matrix[1] * translation_vector[0] +
rotation_matrix[4] * translation_vector[1] +
rotation_matrix[7] * translation_vector[2];
translation_vector2[2] =
rotation_matrix[2] * translation_vector[0] +
rotation_matrix[5] * translation_vector[1] +
rotation_matrix[8] * translation_vector[2];
debout << "-.- ESTIMATED ROTATION -.-" << endl;
for ( size_t p=0; p<3; p++ )
debout << rotation_matrix[p*3] << " , " << rotation_matrix[p*3+1] << " , " << rotation_matrix[p*3+2] << endl;
debout << "-.- ESTIMATED TRANSLATION -.-" << endl;
debout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << endl;
debout << "-.- Translation vector -.-" << endl;
debout << translation_vector2[0] << " , " << translation_vector2[1] << " , " << translation_vector2[2] << endl;
debout << "-.- Rotation vector -.-" << endl;
debout << rvec.at<double>(0,0) << " , " << rvec.at<double>(1,0) << " , " << rvec.at<double>(2,0) << endl;
camHeight = translation_vector2[2] < 0 ? -translation_vector2[2] : translation_vector2[2];
mControlWidget->setCalibExtrRot1(rvec.at<double>(0,0));
mControlWidget->setCalibExtrRot2(rvec.at<double>(1,0));
mControlWidget->setCalibExtrRot3(rvec.at<double>(2,0));
mControlWidget->setCalibExtrTrans1(translation_vector2[0]);
mControlWidget->setCalibExtrTrans2(translation_vector2[1]);
mControlWidget->setCalibExtrTrans3(translation_vector2[2]);
// mControlWidget->setCalibCoord3DTransX(0);
// mControlWidget->setCalibCoord3DTransY(0);
// mControlWidget->setCalibCoord3DTransZ(0);
if ( !calcReprojectionError() )
{
cout << "# Warning: extrinsic calibration not possible! Please select other 2D/3D points!" << endl;
mControlWidget->setCalibExtrRot1(0);
mControlWidget->setCalibExtrRot2(0);
mControlWidget->setCalibExtrRot3(0);
translation_vector2[0] = 0;
translation_vector2[1] = 0;
translation_vector2[2] = 0;
rotation_matrix[0] = 0;
rotation_matrix[1] = 0;
rotation_matrix[2] = 0;
mControlWidget->setCalibExtrTrans1(translation_vector2[0]);
mControlWidget->setCalibExtrTrans2(translation_vector2[1]);
mControlWidget->setCalibExtrTrans3(translation_vector2[2]);
reprojectionError.clear();
QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: Could not calculate extrinsic calibration. Please select other 2D/3D point correspondences for extrinsic calibration!"));
isExtCalib = false;
return;
}
isExtCalib = true;
cout << "End of extern calibration!" << endl;
}else
{
cerr << "# Warning: invalid point correspondences for camera calibration." << endl;
cerr << "# 2D points:" << points2D.size() << ", 3D points: " << points3D.size() << endl;
}
mMainWindow->getScene()->update();
}
/**
* @brief Calculates the reprojection Error
*
* This method calculates following errors and their variance:
* <ul>
* <li>2D Point to 3D Point against 3D Point - using calibration points</li>
* <li>3D to 2D to 3D against 2D to 3D - using default height for calib. points</li>
* <li>3D to 2D against 2D - using calib. points</li>
* </ul>
* @return
*/
bool ExtrCalibration::calcReprojectionError()
{
//////
/// \brief error measurements
///
float val, max_px = -1.0, max_pH = -1.0, max_dH = -1.0,
var_px = 0, sd_px = 0, var_pH = 0, sd_pH = 0, var_dH = 0, sd_dH = 0,
sum_px = 0, sum_pH = 0, sum_dH = 0;
//int bS = mMainWindow->getImageBorderSize();
size_t num_points = get2DList().size();
if(num_points == 0 || num_points != get3DList().size()){
reprojectionError = QVector<double>(13, -1);
return false;
}
for(size_t i=0; i< num_points; i++)
Point2f p2d = get2DList().at(i);
Point3f p3d = get3DList().at(i);
p3d.x -= mControlWidget->getCalibCoord3DTransX();
p3d.y -= mControlWidget->getCalibCoord3DTransY();
p3d.z -= mControlWidget->getCalibCoord3DTransZ();
Point2f p3dTo2d = getImagePoint(p3d);
// Error measurements metric (cm)
//debout << "Point-Height: " << endl;
Point3f p2dTo3d = get3DPoint(p2d,p3d.z);
//debout << p2d.x << " " << p2d.y << " " << p2d.z << endl;
//debout << p3d.x << " " <<p3d.y << " " <<p3d.z << endl;
//debout << "Default-Height: " << endl;
Point3f p2dTo3dMapDefaultHeight = get3DPoint(p2d,mControlWidget->mapDefaultHeight->value());
//debout << p2d_mapDefaultHeight.x << " " << p2d_mapDefaultHeight.y << " " << p2d_mapDefaultHeight.z << endl;
Point3f p3dTo2dTo3dMapDefaultHeight = get3DPoint(p3dTo2d,mControlWidget->mapDefaultHeight->value());
//debout << p3d_mapDefaultHeight.x << " " << p3d_mapDefaultHeight.y << " " << p3d_mapDefaultHeight.z << endl;
val = sqrt(pow(p3d.x - p2dTo3d.x,2) + pow(p3d.y - p2dTo3d.y,2));
if ( val > max_pH ) max_pH = val;
sum_pH += val;
if( debug ) debout << "Error point[" << i << "]: " << val << endl;
val = sqrt(pow(p3dTo2dTo3dMapDefaultHeight.x - p2dTo3dMapDefaultHeight.x,2) + pow(p3dTo2dTo3dMapDefaultHeight.y-p2dTo3dMapDefaultHeight.y,2));
if ( val > max_dH ) max_dH = val;
sum_dH += val;
if( debug ) debout << "Error point[" << i << "]: " << val << endl;
// Error measurements pixel
val = sqrt(pow(p3dTo2d.x - p2d.x,2) + pow(p3dTo2d.y - p2d.y,2));
// Maximum
if ( val > max_px ) max_px = val;
sum_px += val;
if( debug ) debout << "Error point[" << i << "]: " << val << endl;
}
for(size_t i=0; i< num_points; i++)
Point2f p2d = get2DList().at(i);
Point3f p3d = get3DList().at(i);
p3d.x -= mControlWidget->getCalibCoord3DTransX();
p3d.y -= mControlWidget->getCalibCoord3DTransY();
p3d.z -= mControlWidget->getCalibCoord3DTransZ();
Point2f p3d_to_2d = getImagePoint(p3d);
// Error measurements metric (cm)
//debout << "Point-Height: " << endl;
Point3f p2d_to_3d = get3DPoint(p2d,p3d.z);
//debout << p2d.x << " " << p2d.y << " " << p2d.z << endl;
//debout << p3d.x << " " <<p3d.y << " " <<p3d.z << endl;
//debout << "Default-Height: " << endl;
Point3f p2d_to_3d_mapDefaultHeight = get3DPoint(p2d,mControlWidget->mapDefaultHeight->value()); // mStatusPosRealHeight->value()); ?
//debout << p2d_mapDefaultHeight.x << " " << p2d_mapDefaultHeight.y << " " << p2d_mapDefaultHeight.z << endl;
Point3f p3d_to2d_to3d_mapDefaultHeight = get3DPoint(p3d_to_2d,mControlWidget->mapDefaultHeight->value());
//debout << p3d_mapDefaultHeight.x << " " << p3d_mapDefaultHeight.y << " " << p3d_mapDefaultHeight.z << endl;
val = pow(sqrt(pow(p3d.x-p2d_to_3d.x,2) + pow(p3d.y-p2d_to_3d.y,2))-(sum_pH/num_points),2);
val = pow(sqrt(pow(p3d_to2d_to3d_mapDefaultHeight.x-p2d_to_3d_mapDefaultHeight.x,2) + pow(p3d_to2d_to3d_mapDefaultHeight.y-p2d_to_3d_mapDefaultHeight.y,2))-(sum_dH/num_points),2);
val = pow(sqrt(pow(p3d_to_2d.x-p2d.x,2) + pow(p3d_to_2d.y-p2d.y,2))-(sum_px/num_points),2);
var_px += val;
}
if( reprojectionError.isEmpty() )
reprojectionError = QVector<double>(13, -1);
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
// average
sum_pH /= num_points;
var_pH /= num_points;
sd_pH = sqrt(var_pH);
debout << "Reprojection error (pointHeight) average: " << sum_pH << "cm (standard deviation: " << sd_pH << " variance: " << var_pH << " Max error: " << max_pH << "cm)" << endl;
reprojectionError[0] = sum_pH;
reprojectionError[1] = sd_pH;
reprojectionError[2] = var_pH;
reprojectionError[3] = max_pH;
// average
sum_dH /= num_points;
var_dH /= num_points;
sd_dH = sqrt(var_dH);
debout << "Reprojection error (defaultHeight=" << mControlWidget->mapDefaultHeight->value() << ") average: " << sum_dH << "cm (standard deviation: " << sd_dH << " variance: " << var_dH << " Max error: " << max_dH << "cm)" << endl;
reprojectionError[4] = sum_dH;
reprojectionError[5] = sd_dH;
reprojectionError[6] = var_dH;
reprojectionError[7] = max_dH;
// average
sum_px /= num_points;
var_px /= num_points;
sd_px = sqrt(var_px);
debout << "Reprojection error (Pixel) average: " << sum_px << "px (standard deviation: " << sd_px << " variance: " << var_px << " Max error: " << max_px << "px)" << endl;
reprojectionError[8] = sum_px;
reprojectionError[9] = sd_px;
reprojectionError[10] = var_px;
reprojectionError[11] = max_px;
// default height
reprojectionError[12] = mControlWidget->mapDefaultHeight->value();
return reprojectionError[0] > MAX_AV_ERROR ? false : true; // Falls pixel fehler im schnitt > 20 ist das Ergebnis nicht akzeptabel
}
/**
* @brief Projects the 3D point to the image plane
*
* Projection is done by multiplying with the external camera matrix
* composed out of rotation and translation aquired in ExtrCalibration::calibExtrParams().
* After that, the internal camera matrix is applied.
*
* @param p3d 3D point to transform
* @return calculated 2D projection of p3d
*/
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
Point2f ExtrCalibration::getImagePoint(Point3f p3d)
{
bool debug = false;
p3d.x *= mControlWidget->getCalibCoord3DSwapX() ? -1 : 1;
p3d.y *= mControlWidget->getCalibCoord3DSwapY() ? -1 : 1;
p3d.z *= mControlWidget->getCalibCoord3DSwapZ() ? -1 : 1;
// Adding the coordsystem translation from petrack window
p3d.x += mControlWidget->getCalibCoord3DTransX();
p3d.y += mControlWidget->getCalibCoord3DTransY();
p3d.z += mControlWidget->getCalibCoord3DTransZ();
if( debug ) cout << "getImagePoint: Start Point3D: (" << p3d.x << ", " << p3d.y << ", " << p3d.z << ")" << endl;
// ToDo: use projectPoints();
int bS = mMainWindow->getImage() ? mMainWindow->getImageBorderSize() : 0;
double rvec_array[3], translation_vector[3];
rvec_array[0] = mControlWidget->getCalibExtrRot1();
rvec_array[1] = mControlWidget->getCalibExtrRot2();
rvec_array[2] = mControlWidget->getCalibExtrRot3();
Mat rvec(3,1,CV_64F, rvec_array), rot_inv;
Mat rot_mat(3,3,CV_64F), e(3,3,CV_64F);
// Transform the rotation vector into a rotation matrix with opencvs rodrigues method
Rodrigues(rvec,rot_mat);
// use inverse Matrix to get translation_vector?
rot_inv = rot_mat.inv(DECOMP_SVD);
e = rot_inv*rot_mat;
translation_vector[0] =
rot_mat.at<double>(0,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(0,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(0,2)*mControlWidget->getCalibExtrTrans3();
translation_vector[1] =
rot_mat.at<double>(1,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(1,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(1,2)*mControlWidget->getCalibExtrTrans3();
translation_vector[2] =
rot_mat.at<double>(2,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(2,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(2,2)*mControlWidget->getCalibExtrTrans3();
if( debug )
{
cout << "\n-.- ESTIMATED ROTATION\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",rot_mat.at<double>(p,0),rot_mat.at<double>(p,1),rot_mat.at<double>(p,2));
//cout << rot_mat.at<double>(p,0) << " , " << rot_mat.at<double>(p,1) << " , " << rot_mat.at<double>(p,2) << "\n";
cout << "\n-.- ESTIMATED ROTATION^-1\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",rot_inv.at<double>(p,0),rot_inv.at<double>(p,1),rot_inv.at<double>(p,2));
//cout << rot_inv.at<double>(p,0) << " , " << rot_inv.at<double>(p,1) << " , " << rot_inv.at<double>(p,2) << "\n";
cout << "\n-.- ESTIMATED R^-1*R\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",e.at<double>(p,0),e.at<double>(p,1),e.at<double>(p,2));
//cout << e.at<double>(p,0) << " , " << e.at<double>(p,1) << " , " << e.at<double>(p,2) << "\n";
cout << "\n-.- ESTIMATED TRANSLATION\n";
printf("%20.15f, %20.15f, %20.15f\n",translation_vector[0],translation_vector[1],translation_vector[2]);
//cout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << "\n";
//cout << this->translation_vector[0] << " = " << translation_vector[0] << endl;
//cout << this->translation_vector[1] << " = " << translation_vector[1] << endl;
//cout << this->translation_vector[2] << " = " << translation_vector[2] << endl;
}
Point3f point3D;
point3D.x =
rot_mat.at<double>(0,0) * p3d.x +
rot_mat.at<double>(0,1) * p3d.y +
rot_mat.at<double>(0,2) * p3d.z +
translation_vector[0];
point3D.y =
rot_mat.at<double>(1,0) * p3d.x +
rot_mat.at<double>(1,1) * p3d.y +
rot_mat.at<double>(1,2) * p3d.z +
translation_vector[1];
point3D.z =
rot_mat.at<double>(2,0) * p3d.x +
rot_mat.at<double>(2,1) * p3d.y +
rot_mat.at<double>(2,2) * p3d.z +
translation_vector[2];
if( debug ) cout << "###### After extern calibration: (" << point3D.x << ", " << point3D.y << ", " << point3D.z << ")" << endl;
Point2f point2D = Point2f( 0.0, 0.0 );
if ( point3D.z != 0 )
{
point2D.x = (mControlWidget->fx->value() * point3D.x) / point3D.z + (mControlWidget->cx->value()-bS);
point2D.y = (mControlWidget->fy->value() * point3D.y) / point3D.z + (mControlWidget->cy->value()-bS);
}
if (false && bS > 0)
{
point2D.x += bS;
point2D.y += bS;
}
return point2D;
}
/**
* @brief Tranforms a 2D point into a 3D point with given height.
*
* @param p2d 2D pixel point (without border)
* @param h height i.e. distance to xy-plane
* @return calculated 3D point
*/
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
Point3f ExtrCalibration::get3DPoint(Point2f p2d, double h)
{
bool debug = false;
// bool debug = true;
if( debug ) cout << "get3DPoint: Start Point2D: (" << p2d.x << ", " << p2d.y << ") h: " << h << endl;
int bS = mMainWindow->getImage() ? mMainWindow->getImageBorderSize() : 0;
if (false && bS > 0)
{
p2d.x += bS;
p2d.y += bS;
}
// Ergebnis 3D-Punkt
Point3f resultPoint, tmpPoint;
bool newMethod = true;
/////////////// Start new method
if( newMethod )
{
double rvec_array[3], translation_vector[3];
rvec_array[0] = mControlWidget->getCalibExtrRot1();
rvec_array[1] = mControlWidget->getCalibExtrRot2();
rvec_array[2] = mControlWidget->getCalibExtrRot3();
Mat rvec(3,1,CV_64F, rvec_array), rot_inv;
Mat rot_mat(3,3,CV_64F), e(3,3,CV_64F);
// Transform the rotation vector into a rotation matrix with opencvs rodrigues method
Rodrigues(rvec,rot_mat);
translation_vector[0] =
rot_mat.at<double>(0,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(0,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(0,2)*mControlWidget->getCalibExtrTrans3();
translation_vector[1] =
rot_mat.at<double>(1,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(1,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(1,2)*mControlWidget->getCalibExtrTrans3();
translation_vector[2] =
rot_mat.at<double>(2,0)*mControlWidget->getCalibExtrTrans1()+
rot_mat.at<double>(2,1)*mControlWidget->getCalibExtrTrans2()+
rot_mat.at<double>(2,2)*mControlWidget->getCalibExtrTrans3();
// use inverse Matrix
rot_inv = rot_mat.inv(DECOMP_LU);
e = rot_inv*rot_mat;
if( debug )
{
debout << "\n-.- ESTIMATED ROTATION\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",rot_mat.at<double>(p,0),rot_mat.at<double>(p,1),rot_mat.at<double>(p,2));
//cout << rot_mat.at<double>(p,0) << " , " << rot_mat.at<double>(p,1) << " , " << rot_mat.at<double>(p,2) << "\n";
debout << "\n-.- ESTIMATED ROTATION^-1\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",rot_inv.at<double>(p,0),rot_inv.at<double>(p,1),rot_inv.at<double>(p,2));
//cout << rot_inv.at<double>(p,0) << " , " << rot_inv.at<double>(p,1) << " , " << rot_inv.at<double>(p,2) << "\n";
debout << "\n-.- ESTIMATED R^-1*R\n";
for ( size_t p=0; p<3; p++ )
printf("%20.18f, %20.18f, %20.18f\n",e.at<double>(p,0),e.at<double>(p,1),e.at<double>(p,2));
//cout << e.at<double>(p,0) << " , " << e.at<double>(p,1) << " , " << e.at<double>(p,2) << "\n";
debout << "\n-.- ESTIMATED TRANSLATION\n";
debout << mControlWidget->getCalibExtrTrans1() << " , " << mControlWidget->getCalibExtrTrans2() << " , " << mControlWidget->getCalibExtrTrans3() << "\n";
debout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << "\n";
debout << "Det(rot_mat): "<< determinant(rot_mat) << endl;
debout << "Det(rot_inv): "<< determinant(rot_inv) << endl;
}
double z = h + rot_inv.at<double>(2,0)*translation_vector[0] +
rot_inv.at<double>(2,1)*translation_vector[1] +
rot_inv.at<double>(2,2)*translation_vector[2];
if( debug )
{
debout << "##### z: " << h << " + " << rot_inv.at<double>(2,0) << "*" << translation_vector[0] << " + "
<< rot_inv.at<double>(2,1) << "*" << translation_vector[1] << " + "
<< rot_inv.at<double>(2,2) << "*" << translation_vector[2] << " = " << z << endl;
}
z /= (rot_inv.at<double>(2,0)*(p2d.x-/*bS)-(*/(mControlWidget->getCalibCxValue()-bS)/*-bS*/)/mControlWidget->getCalibFxValue() +
rot_inv.at<double>(2,1)*(p2d.y-/*bS)-(*/(mControlWidget->getCalibCyValue()-bS)/*-bS*/)/mControlWidget->getCalibFyValue() +
rot_inv.at<double>(2,2));
if( debug ) cout << "###### z: "<< z << endl;
resultPoint.x = (p2d.x-/*bS)-(*/(mControlWidget->getCalibCxValue()-bS)/*-bS*/);
resultPoint.y = (p2d.y-/*bS)-(*/(mControlWidget->getCalibCyValue()-bS)/*-bS*/);
resultPoint.z = z;
if( debug ) cout << "###### (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;
resultPoint.x = resultPoint.x * z/mControlWidget->getCalibFxValue();
resultPoint.y = resultPoint.y * z/mControlWidget->getCalibFyValue();
if( debug ) cout << "###### After intern re-calibration: (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;
tmpPoint.x = resultPoint.x - translation_vector[0];
tmpPoint.y = resultPoint.y - translation_vector[1];
tmpPoint.z = resultPoint.z - translation_vector[2];
if( debug ) cout << "###### After translation: (" << tmpPoint.x << ", " << tmpPoint.y << ", " << tmpPoint.z << ")" << endl;
resultPoint.x = rot_inv.at<double>(0,0)*(tmpPoint.x)+
rot_inv.at<double>(0,1)*(tmpPoint.y)+
rot_inv.at<double>(0,2)*(tmpPoint.z);
resultPoint.y = rot_inv.at<double>(1,0)*(tmpPoint.x)+
rot_inv.at<double>(1,1)*(tmpPoint.y)+
rot_inv.at<double>(1,2)*(tmpPoint.z);
resultPoint.z = rot_inv.at<double>(2,0)*(tmpPoint.x)+
rot_inv.at<double>(2,1)*(tmpPoint.y)+
rot_inv.at<double>(2,2)*(tmpPoint.z);
if( debug ) cout << "#resultPoint: (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;
if( debug ) cout << "Coord Translation: x: " << mControlWidget->getCalibCoord3DTransX() << ", y: " << mControlWidget->getCalibCoord3DTransY() << ", z: " << mControlWidget->getCalibCoord3DTransZ() << endl;
// Coordinate Transformations
resultPoint.x -= mControlWidget->getCalibCoord3DTransX();
resultPoint.y -= mControlWidget->getCalibCoord3DTransY();
resultPoint.z -= mControlWidget->getCalibCoord3DTransZ();
resultPoint.x *= mControlWidget->getCalibCoord3DSwapX() ? -1 : 1;
resultPoint.y *= mControlWidget->getCalibCoord3DSwapY() ? -1 : 1;
resultPoint.z *= mControlWidget->getCalibCoord3DSwapZ() ? -1 : 1;
}else//////////////// End new method
{
//////////////// Start old method
Point3f camInWorld = transformRT(Point3f(0,0,0));
// 3D-Punkt vor der Kamera mit Tiefe 5
CvPoint3D32f pointBeforeCam;
pointBeforeCam.x = (p2d.x - mControlWidget->cx->value()) / mControlWidget->fx->value() * 50;
pointBeforeCam.y = (p2d.y - mControlWidget->cy->value()) / mControlWidget->fy->value() * 50;
pointBeforeCam.z = 50;
if( debug ) cout << "Point before Camera: [" << pointBeforeCam.x << ", " << pointBeforeCam.y << ", " << pointBeforeCam.z << "]" << endl;
// 3D-Punkt vor Kamera in Weltkoordinaten
Point3f pBCInWorld = transformRT(pointBeforeCam);
if( debug ) cout << "Point before Camera in World-Coordinatesystem: [" << pBCInWorld.x << ", " << pBCInWorld.y << ", " << pBCInWorld.z << "]" << endl;
if( debug ) cout << "Camera in World-Coordinatesystem: [" << camInWorld.x << ", " << camInWorld.y << ", " << camInWorld.z << "]" << endl;
// Berechnung des Richtungsvektors der Gerade von der Kamera durch den Pixel
// Als Sttzvektor der Geraden wird die Position der Kamera gewhlt
pBCInWorld.x -= camInWorld.x;
pBCInWorld.y -= camInWorld.y;
pBCInWorld.z -= camInWorld.z;
if( debug ) cout << "G:x = (" << camInWorld.x << " / " << camInWorld.y << " / " << camInWorld.z << ") + lambda (" << pBCInWorld.x << " / " << pBCInWorld.y << " / " << pBCInWorld.z << ")" << endl;
// Berechnung des Schnittpunktes: Hier lambda von der Geraden
double lambda = (h -camInWorld.z) / (pBCInWorld.z);
if( debug ) cout << "Lambda: " << lambda << endl;
// Lambda in Gerade einsetzen