Skip to content
Snippets Groups Projects
extrCalibration.cpp 41 KiB
Newer Older
d.kilic's avatar
d.kilic committed
#include <QtWidgets>
#include <QFileDialog>
#include <QMessageBox>

#include "extrCalibration.h"

#include "petrack.h"
#include "control.h"

using namespace std;
using namespace cv;

d.kilic's avatar
d.kilic committed
#define MAX_AV_ERROR 20

ExtrCalibration::ExtrCalibration()
{
    mMainWindow = NULL;
    mControlWidget = NULL;
}

ExtrCalibration::~ExtrCalibration()
{
}

void ExtrCalibration::setMainWindow(Petrack *mw)
{
    mMainWindow = mw;
    mControlWidget = mw->getControlWidget();
    init();
}
void ExtrCalibration::init()
{
    rotation_matrix = new double[9];
    translation_vector = new double[3];
    translation_vector2 = new double[3];

    camValues = new double[9];
    distValues = new double[8];

    isExtCalib = false;
}
bool ExtrCalibration::isEmptyExtrCalibFile()
{
    return mExtrCalibFile.isEmpty();
}

void ExtrCalibration::setExtrCalibFile(const QString &f)
{
    mExtrCalibFile = f;
}

QString ExtrCalibration::getExtrCalibFile()
{
    if (!this->isEmptyExtrCalibFile())
        return mExtrCalibFile;
    else
        return QString();
}

bool ExtrCalibration::openExtrCalibFile(){

    if (mMainWindow)
    {
        static QString lastDir;

        if (!mExtrCalibFile.isEmpty())
            lastDir = QFileInfo(mExtrCalibFile).path();

        QString extrCalibFile = QFileDialog::getOpenFileName(mMainWindow, Petrack::tr("Open extrinisc calibration file with point correspondences"), lastDir, "3D-Calibration-File (*.3dc);;Text (*.txt);;All supported types (*.3dc *.txt);;All files (*.*)");
        if (!extrCalibFile.isEmpty())
        {
            mExtrCalibFile = extrCalibFile;
            return loadExtrCalibFile();
        }
        //cout << mCalibFiles.first().toStdString() << endl; //toAscii() .data() Local8Bit().constData() << endl;
    }
    return false;

}
bool ExtrCalibration::loadExtrCalibFile(){

    bool all_ok = true;

    if( !mExtrCalibFile.isEmpty() )
    {
        if( mExtrCalibFile.right(4) == ".3dc" || mExtrCalibFile.right(4) == ".txt" )
        {
            QFile file(mExtrCalibFile);
            if( !file.open(QIODevice::ReadOnly | QIODevice::Text) )
            {
                QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: Cannot open %1:\n%2.").arg(mExtrCalibFile).arg(file.errorString()));
                return false;
            }

            debout << "Reading 3D calibration data from " << mExtrCalibFile << "..." << endl;


            vector<Point3f> points3D_tmp;
            vector<Point2f> points2D_tmp;

            QTextStream in(&file);
            QString line;
            int line_counter = 0, counter;
            float x,y,z,px,py;
            float zahl;
            bool with_2D_data = false,
                 with_3D_data = false,
                 end_loop = false;

            while( 1 )
            {
                // Falls Datei am Ende Schleife beenden
                if( in.atEnd() )
                {
                    break;
                }

                // Neue Zeile einlesen
                line = in.readLine();
                ++line_counter;

                // Kommentare ueberlesen
                if( line.startsWith("#",Qt::CaseInsensitive) ||
                    line.startsWith(";;",Qt::CaseInsensitive) ||
                    line.startsWith("//",Qt::CaseInsensitive) ||
                    line.startsWith("!",Qt::CaseInsensitive) )
                    continue;

                // Test-Ausgabe
//                debout << "line: " << line << endl;

                QTextStream stream(&line);
                counter = 0;
                end_loop = false;

                while( !stream.atEnd() && !end_loop )
                {
                    stream >> zahl;
                    ++counter;

                    switch( counter )
                    {
                    case 1:
                        x = zahl;
                        if( !with_3D_data )
                        {
                            points3D_tmp.clear();
                            with_3D_data = true;
                        }
                        break;
                    case 2:
                        y = zahl;
                        break;
                    case 3:
                        z = zahl;
                        break;
                    case 4:
                        px = zahl;
                        if( !with_2D_data )
                        {
                            points2D_tmp.clear();
                            with_2D_data = true;
                        }
                        break;
                    case 5:
                        py = zahl;
                        break;
                    default:
                        //debout << "### Error: counter=" << counter << endl;
                        end_loop = true;
                    }

                }
                if( counter == 1 )
                {
                    debout << "Optional number of points in line " << line_counter << " ignored." << endl;
                }else if( counter != 3 && counter != 5 )
                    debout << "Something wrong in line " << line_counter << "( " << line << " )! Ignored. (counter=" << counter << ")" << endl;

                // 3D daten abspeichern
                if( with_3D_data && (counter == 3 || counter == 5) )
                {
                    //debout << "x: " << x << " y: " << y << " z: " << z << endl;
                    points3D_tmp.push_back( Point3f( x, y, z ) );
                }
                // 2D daten abspeichern
                if( with_2D_data && counter == 5 )
                {
                    //debout << " px: " << px << " py: " << py << endl;
                    points2D_tmp.push_back( Point2f( px, py ) );
                }



            }
            // Check if there are more than 4 points for calibration in the file
             if( points3D_tmp.size() < 4 )
            {
                QMessageBox::critical(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Error: Not enough points given: %1 (minimum 4 needed!). Please check your extrinsic calibration file!").arg(points3D_tmp.size()));
                all_ok = false;
            }

            // Check if 2D points delivered and if the number of 2D and 3D points agree
            else if( points2D_tmp.size() > 0 && points2D_tmp.size() != points3D_tmp.size() )
            {
                QMessageBox::critical(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Error: Unsupported File Format in: %1 (number of 3D (%2) and 2D (%3) points disagree!)").arg(mExtrCalibFile).arg(points3D_tmp.size()).arg(points2D_tmp.size()));
                all_ok = false;
            }
            // Check if number of loaded 3D points agree with stored 2D points
            else if( !with_2D_data && points2D.size()>0 && points3D_tmp.size() != points2D.size() )
            {
                // ask if stored 2D points should be deleted?
                int result = QMessageBox::warning(mMainWindow, QObject::tr("PeTrack"), QObject::tr("Number of 3D points (%1) disagree with number of stored 2D points (%2)!<br />The 2D points will be deleted! You have to fetch new ones from the image!").arg(points3D_tmp.size()).arg(points2D.size()),QMessageBox::Ok, QMessageBox::Abort);
                if (result != QMessageBox::Ok)
                    all_ok = false;
                else
                    points2D.clear();

            }
            if( all_ok )
            {
                if( with_3D_data ) points3D = points3D_tmp;
                if( with_2D_data ) points2D = points2D_tmp;
            }
        }else
        {
            debout << "unsupported file extension (supported: .3dc,.txt)" << endl;
        }
    }else
    {
        // no calib_file
        all_ok = false;
    }
    if (all_ok && !mMainWindow->isLoading())
        calibExtrParams();
    return all_ok;
}
bool ExtrCalibration::fetch2DPoints()
{
    bool all_ok = true;
    if( !mMainWindow->getTracker() || mMainWindow->getTracker()->size() < 4 )
    {
       QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: At minimum four 3D calibration points needed for 3D calibration."));
       all_ok = false;
    }else
    {
        size_t sz_2d = mMainWindow->getTracker()->size();
d.kilic's avatar
d.kilic committed

        if( points3D.size()>0 && sz_2d != points3D.size() ){
            QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Count of 2D-Points (%1) and 3D-Points (%2) disagree").arg(sz_2d).arg(points3D.size()));
            all_ok = false;

        }
        //debout << "Marked 2D-Image-Points: " << endl;
        if( all_ok )
        {
            points2D.clear();

d.kilic's avatar
d.kilic committed
            {
                //debout << "[" << i << "]: (" << mMainWindow->getTracker()->at(i).at(0).x() << ", " << mMainWindow->getTracker()->at(i).at(0).y() << ")" << endl;
                // Info: Tracker->TrackPerson->TrackPoint->Vec2F
                points2D.push_back(Point2f(mMainWindow->getTracker()->at(i).at(0).x(),mMainWindow->getTracker()->at(i).at(0).y()));
            }
        }
    }
    if( all_ok )
    {
        mMainWindow->getTracker()->clear();
        calibExtrParams();
    }
    return all_ok;
}
bool ExtrCalibration::saveExtrCalibPoints()
{
    bool all_okay = false;

    QString out_str;
    QTextStream out(&out_str);


    for (size_t i = 0; i < points3D.size(); ++i)
d.kilic's avatar
d.kilic committed
    {
        out << "[" << QString::number(i+1,'i',0) << "]: "<< QString::number(points3D.at(i).x,'f',1) << " " << QString::number(points3D.at(i).y,'f',1) << " " << QString::number(points3D.at(i).z,'f',1) << " " << QString::number(points2D.at(i).x,'f',3) << " " << QString::number(points2D.at(i).y,'f',3) << Qt::endl;
d.kilic's avatar
d.kilic committed
    }
    QMessageBox msgBox;
    msgBox.setIcon(QMessageBox::Warning);
    msgBox.setText("The corresponding calibration points have been changed.");
    msgBox.setInformativeText("Do you want to save your changes?");
    msgBox.setDetailedText(out_str);
    msgBox.setStandardButtons(QMessageBox::QMessageBox::Save | QMessageBox::Cancel);
    msgBox.setDefaultButton(QMessageBox::Save);
    int ret = msgBox.exec();
    switch (ret) {
       case QMessageBox::Save:
        {
           // Save was clicked
            QFile file(mExtrCalibFile);

            if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
            {
              QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Cannot open %1:\n%2.").arg(mExtrCalibFile).arg(file.errorString()));
              return false;
            }

            QTextStream file_out(&file);

            file_out << points3D.size() << Qt::endl;
            for (size_t i = 0; i < points3D.size(); ++i)
d.kilic's avatar
d.kilic committed
            {
                file_out << points3D.at(i).x << " " << points3D.at(i).y << " " << points3D.at(i).z << " " << points2D.at(i).x << " " << points2D.at(i).y << Qt::endl;
d.kilic's avatar
d.kilic committed
            }
            all_okay = file.flush();
            file.close();
           break;
        }
       case QMessageBox::Discard:
           // Don't Save was clicked
           break;
       case QMessageBox::Cancel:
           // Cancel was clicked
           break;
       default:
           // should never be reached
           break;
    }

    return all_okay;
}

bool ExtrCalibration::isSetExtrCalib(){

//    bool isSetExtrCalib = false;
//
//    if( mControlWidget->getCalibExtrRot1() != 0.00 &&
//        mControlWidget->getCalibExtrRot2() != 0.00 &&
//        mControlWidget->getCalibExtrRot3() != 0.00 &&
//        mControlWidget->getCalibExtrTrans1() != 0.00 &&
//        mControlWidget->getCalibExtrTrans2() != 0.00 &&
//        mControlWidget->getCalibExtrTrans3() != 0.00 )
//    {
//        isSetExtrCalib = true;
//    }
d.kilic's avatar
d.kilic committed
    return true;//isSetExtrCalib;
}

void ExtrCalibration::calibExtrParams()
{

    if( !points3D.empty() && !points2D.empty() && points2D.size() == points3D.size() )
    {

        int bS = mMainWindow->getImageBorderSize();
        /* Create Camera-Matrix form Camera-Params in the Petrack-GUI */
        Mat camMat = (Mat_<double>(3,3) <<
                      mControlWidget->fx->value(), 0, mControlWidget->cx->value()-bS,
                      0, mControlWidget->fy->value(), mControlWidget->cy->value()-bS,
                      0, 0, 1);

        /* Distortion Params must be 0 because only undistorted images are supported */
//        if( mControlWidget->r2->value() != 0 || mControlWidget->r4->value() != 0
//         || mControlWidget->tx->value() != 0 || mControlWidget->ty->value() != 0 )
//        {
//            QMessageBox::warning(mMainWindow, "Petrack",
//                                            "The distortion Parameters are set!\n"
//                                               "The 3D Camera-Calibration is implemented only for images without distortion.\n"
//                                               "There is no waranty of correct results!",
//                                            QMessageBox::Ok,QMessageBox::Ok);
//        }
        Mat distMat = (Mat_<double>(8,1) <<
                       0,//mControlWidget->r2->value(),
                       0,//mControlWidget->r4->value(),
                       0,//mControlWidget->tx->value(),
                       0,//mControlWidget->ty->value(),
                       // r^>4 not supported
                       0,//mControlWidget->r6->value(),
                       0,//mControlWidget->k4->value(),
                       0,//mControlWidget->k5->value(),
                       0//mControlWidget->k6->value()
                    );

        /* Create Mat-objects of point correspondences */
        Mat op(points3D);
        Mat ip(points2D);

        //cout << "3D Punkte: " << endl << "  " << format(points3D,"csv") << endl;
        //cout << "2D Punkte: " << endl << "  " << format(points2D,"csv") << endl;

        /* Mat-objects for result rotation and translation vectors */
        Mat rvec(3,1,CV_64F),/*,0),*/ tvec(3,1,CV_64F);//,0);

        // Solve the PnP-Problem to calibrate the camera to its environment
        solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_ITERATIVE);
d.kilic's avatar
d.kilic committed
        //bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_P3P); // Requires exactly 4 points
        //bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_EPNP);
        //bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_DLS);
        //bool solvePNPsuccess = solvePnP(op,ip,camMat,distMat,rvec,tvec,false,SOLVEPNP_UPNP);
        //bool solvePNPsuccess = true;
        //solvePnPRansac(op,ip,camMat,distMat,rvec,tvec);
d.kilic's avatar
d.kilic committed
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905


//        debout << "The solvePNP-Method " << (solvePNPsuccess ? "" : "doesn't ") << "worked. " << solvePNPsuccess << endl;

//        void decomposeProjectionMatrix(InputArray projMatrix,
//                                       OutputArray cameraMatrix,
//                                       OutputArray rotMatrix,
//                                       OutputArray transVect,
//                                       OutputArray rotMatrixX=noArray(),
//                                       OutputArray rotMatrixY=noArray(),
//                                       OutputArray rotMatrixZ=noArray(),
//                                       OutputArray eulerAngles=noArray() );

//        debout << "Rotation:" << endl;
//        debout << rvec.at<double>(0,0) << ", " << rvec.at<double>(1,0) << ", " << rvec.at<double>(2,0) << endl;
//        debout << rvec.at<double>(0,0) << ", " << rvec.at<double>(0,1) << ", " << rvec.at<double>(0,2) << endl;
//        debout << "Translation:" << endl;
//        debout << tvec.at<double>(0,0) << ", " << tvec.at<double>(1,0) << ", " << tvec.at<double>(2,0) << endl;
//        debout << tvec.at<double>(0,0) << ", " << tvec.at<double>(0,1) << ", " << tvec.at<double>(0,2) << endl;

        Mat rot_mat(3,3,CV_64F);//, 0);
        // Transform the rotation vector into a rotation matrix with opencvs rodrigues method
        Rodrigues(rvec,rot_mat);

        rotation_matrix[0] = rot_mat.at<double>(0,0);
        rotation_matrix[1] = rot_mat.at<double>(0,1);
        rotation_matrix[2] = rot_mat.at<double>(0,2);
        rotation_matrix[3] = rot_mat.at<double>(1,0);
        rotation_matrix[4] = rot_mat.at<double>(1,1);
        rotation_matrix[5] = rot_mat.at<double>(1,2);
        rotation_matrix[6] = rot_mat.at<double>(2,0);
        rotation_matrix[7] = rot_mat.at<double>(2,1);
        rotation_matrix[8] = rot_mat.at<double>(2,2);

        translation_vector[0] = tvec.at<double>(0,0);
        translation_vector[1] = tvec.at<double>(0,1);
        translation_vector[2] = tvec.at<double>(0,2);

        translation_vector2[0] =
                rotation_matrix[0] * translation_vector[0] +
                rotation_matrix[3] * translation_vector[1] +
                rotation_matrix[6] * translation_vector[2];
        translation_vector2[1] =
                rotation_matrix[1] * translation_vector[0] +
                rotation_matrix[4] * translation_vector[1] +
                rotation_matrix[7] * translation_vector[2];
        translation_vector2[2] =
                rotation_matrix[2] * translation_vector[0] +
                rotation_matrix[5] * translation_vector[1] +
                rotation_matrix[8] * translation_vector[2];

        debout << "-.- ESTIMATED ROTATION -.-" << endl;
        for ( size_t p=0; p<3; p++ )
            debout << rotation_matrix[p*3] << " , " << rotation_matrix[p*3+1] << " , " << rotation_matrix[p*3+2] << endl;

        debout << "-.- ESTIMATED TRANSLATION -.-" << endl;
        debout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << endl;

        debout << "-.- Translation vector -.-" << endl;
        debout << translation_vector2[0] << " , " << translation_vector2[1] << " , " << translation_vector2[2] << endl;

        debout << "-.- Rotation vector -.-" << endl;
        debout << rvec.at<double>(0,0) << " , " << rvec.at<double>(1,0) << " , " << rvec.at<double>(2,0) << endl;

        camHeight = translation_vector2[2] < 0 ? -translation_vector2[2] : translation_vector2[2];

        mControlWidget->setCalibExtrRot1(rvec.at<double>(0,0));
        mControlWidget->setCalibExtrRot2(rvec.at<double>(1,0));
        mControlWidget->setCalibExtrRot3(rvec.at<double>(2,0));

        mControlWidget->setCalibExtrTrans1(translation_vector2[0]);
        mControlWidget->setCalibExtrTrans2(translation_vector2[1]);
        mControlWidget->setCalibExtrTrans3(translation_vector2[2]);

//        mControlWidget->setCalibCoord3DTransX(0);
//        mControlWidget->setCalibCoord3DTransY(0);
//        mControlWidget->setCalibCoord3DTransZ(0);

        if ( !calcReprojectionError() )
        {
            cout << "# Warning: extrinsic calibration not possible! Please select other 2D/3D points!" << endl;

            mControlWidget->setCalibExtrRot1(0);
            mControlWidget->setCalibExtrRot2(0);
            mControlWidget->setCalibExtrRot3(0);

            translation_vector2[0] = 0;
            translation_vector2[1] = 0;
            translation_vector2[2] = 0;

            rotation_matrix[0] = 0;
            rotation_matrix[1] = 0;
            rotation_matrix[2] = 0;

            mControlWidget->setCalibExtrTrans1(translation_vector2[0]);
            mControlWidget->setCalibExtrTrans2(translation_vector2[1]);
            mControlWidget->setCalibExtrTrans3(translation_vector2[2]);

            reprojectionError.clear();

            QMessageBox::critical(mMainWindow, QObject::tr("Petrack"), QObject::tr("Error: Could not calculate extrinsic calibration. Please select other 2D/3D point correspondences for extrinsic calibration!"));

            isExtCalib = false;

            return;
        }

        isExtCalib = true;

        cout << "End of extern calibration!" << endl;
    }else
    {
        cerr << "# Warning: invalid point correspondences for camera calibration." << endl;
        cerr << "# 2D points:" << points2D.size() << ", 3D points: " << points3D.size() << endl;
    }
    mMainWindow->getScene()->update();

}

bool ExtrCalibration::calcReprojectionError()
{
    //////
    /// \brief error measurements
    ///
    float val, max_px = -1.0, max_pH = -1.0, max_dH = -1.0,
          var_px = 0, sd_px = 0, var_pH = 0, sd_pH = 0, var_dH = 0, sd_dH = 0,
          sum_px = 0, sum_pH = 0, sum_dH = 0;

    //int bS = mMainWindow->getImageBorderSize();
    int num_points = get2DList().size();

    bool debug = false;
    for(int i=0; i< num_points; i++)
    {
        Point2f p2 = get2DList().at(i);
        Point3f p3d = get3DList().at(i);
        p3d.x -= mControlWidget->getCalibCoord3DTransX();
        p3d.y -= mControlWidget->getCalibCoord3DTransY();
        p3d.z -= mControlWidget->getCalibCoord3DTransZ();
        Point2f p3 = getImagePoint(p3d);

        // Error measurements metric (cm)
        //debout << "Point-Height: " << endl;
        Point3f p2d = get3DPoint(Point2f(p2.x/*+bS*/,p2.y/*+bS*/),p3d.z);
        //debout << p2d.x << " " << p2d.y << " " << p2d.z << endl;
        //debout << p3d.x << " " <<p3d.y << " " <<p3d.z  << endl;

        //debout << "Default-Height: " << endl;
        Point3f p2d_mapDefaultHeight = get3DPoint(p2,mControlWidget->mapDefaultHeight->value()); // mStatusPosRealHeight->value()); ?
        //debout << p2d_mapDefaultHeight.x << " " << p2d_mapDefaultHeight.y << " " << p2d_mapDefaultHeight.z << endl;

        Point3f p3d_mapDefaultHeight = get3DPoint(Point2f(p3.x,p3.y)/*getImagePoint(p2d_mapDefaultHeight)*/,mControlWidget->mapDefaultHeight->value());
        //debout << p3d_mapDefaultHeight.x << " " << p3d_mapDefaultHeight.y << " " << p3d_mapDefaultHeight.z << endl;

        val = sqrt(pow(p3d.x-p2d.x,2) + pow(p3d.y-p2d.y,2));
        if ( val > max_pH ) max_pH = val;
            sum_pH += val;
        if( debug ) debout << "Error point[" << i << "]: " << val << endl;

        val = sqrt(pow(p3d_mapDefaultHeight.x-p2d_mapDefaultHeight.x,2) + pow(p3d_mapDefaultHeight.y-p2d_mapDefaultHeight.y,2));
        if ( val > max_dH ) max_dH = val;
            sum_dH += val;
        if( debug ) debout << "Error point[" << i << "]: " << val << endl;

        // Error measurements pixel
        val = sqrt(pow(p3.x-p2.x,2) + pow(p3.y-p2.y,2));
        // Maximum
        if ( val > max_px ) max_px = val;
            sum_px += val;
        if( debug ) debout << "Error point[" << i << "]: " << val << endl;

    }
    for(int i=0; i< num_points; i++)
    {
        Point2f p2 = get2DList().at(i);
        Point3f p3d = get3DList().at(i);
        p3d.x -= mControlWidget->getCalibCoord3DTransX();
        p3d.y -= mControlWidget->getCalibCoord3DTransY();
        p3d.z -= mControlWidget->getCalibCoord3DTransZ();
        Point2f p3 = getImagePoint(p3d);

        // Error measurements metric (cm)
        //debout << "Point-Height: " << endl;
        Point3f p2d = get3DPoint(Point2f(p2.x/*+bS*/,p2.y/*+bS*/),p3d.z);
        //debout << p2d.x << " " << p2d.y << " " << p2d.z << endl;
        //debout << p3d.x << " " <<p3d.y << " " <<p3d.z  << endl;

        //debout << "Default-Height: " << endl;
        Point3f p2d_mapDefaultHeight = get3DPoint(p2,mControlWidget->mapDefaultHeight->value()); // mStatusPosRealHeight->value()); ?
        //debout << p2d_mapDefaultHeight.x << " " << p2d_mapDefaultHeight.y << " " << p2d_mapDefaultHeight.z << endl;

        Point3f p3d_mapDefaultHeight = get3DPoint(Point2f(p3.x,p3.y)/*getImagePoint(p2d_mapDefaultHeight)*/,mControlWidget->mapDefaultHeight->value());
        //debout << p3d_mapDefaultHeight.x << " " << p3d_mapDefaultHeight.y << " " << p3d_mapDefaultHeight.z << endl;

        val = pow(sqrt(pow(p3d.x-p2d.x,2) + pow(p3d.y-p2d.y,2))-(sum_pH/num_points),2);
        var_pH += val;

        val = pow(sqrt(pow(p3d_mapDefaultHeight.x-p2d_mapDefaultHeight.x,2) + pow(p3d_mapDefaultHeight.y-p2d_mapDefaultHeight.y,2))-(sum_dH/num_points),2);
        var_dH += val;

        val = pow(sqrt(pow(p3.x-p2.x,2) + pow(p3.y-p2.y,2))-(sum_px/num_points),2);
        var_px += val;

    }

    if( reprojectionError.isEmpty() )
        reprojectionError = QVector<double>(13);

    // average
    sum_pH /= num_points;
    var_pH /= num_points;
    sd_pH = sqrt(var_pH);
    debout << "Reprojection error (pointHeight) average: " << sum_pH << "cm (standard deviation: " << sd_pH << " variance: " << var_pH << " Max error: " << max_pH << "cm)" << endl;
    reprojectionError[0] = sum_pH;
    reprojectionError[1] = sd_pH;
    reprojectionError[2] = var_pH;
    reprojectionError[3] = max_pH;

    // average
    sum_dH /= num_points;
    var_dH /= num_points;
    sd_dH = sqrt(var_dH);
    debout << "Reprojection error (defaultHeight=" << mControlWidget->mapDefaultHeight->value() << ") average: " << sum_dH << "cm (standard deviation: " << sd_dH << " variance: " << var_dH << " Max error: " << max_dH << "cm)" << endl;
    reprojectionError[4] = sum_dH;
    reprojectionError[5] = sd_dH;
    reprojectionError[6] = var_dH;
    reprojectionError[7] = max_dH;

    // average
    sum_px /= num_points;
    var_px /= num_points;
    sd_px = sqrt(var_px);
    debout << "Reprojection error (Pixel) average: " << sum_px << "px (standard deviation: " << sd_px << " variance: " << var_px << " Max error: " << max_px << "px)" << endl;
    reprojectionError[8] = sum_px;
    reprojectionError[9] = sd_px;
    reprojectionError[10] = var_px;
    reprojectionError[11] = max_px;

    // default height
    reprojectionError[12] = mControlWidget->mapDefaultHeight->value();

    return reprojectionError[0] > MAX_AV_ERROR ? false : true; // Falls pixel fehler im schnitt > 20 ist das Ergebnis nicht akzeptabel
}


Point2f ExtrCalibration::getImagePoint(Point3f p3d)
{
    bool debug = false;

    p3d.x *= mControlWidget->getCalibCoord3DSwapX() ? -1 : 1;
    p3d.y *= mControlWidget->getCalibCoord3DSwapY() ? -1 : 1;
    p3d.z *= mControlWidget->getCalibCoord3DSwapZ() ? -1 : 1;

    // Adding the coordsystem translation from petrack window
    p3d.x += mControlWidget->getCalibCoord3DTransX();
    p3d.y += mControlWidget->getCalibCoord3DTransY();
    p3d.z += mControlWidget->getCalibCoord3DTransZ();

    if( debug ) cout << "getImagePoint: Start Point3D: (" << p3d.x << ", " << p3d.y << ", " << p3d.z << ")" << endl;
    // ToDo: use projectPoints();
    int bS = mMainWindow->getImage() ? mMainWindow->getImageBorderSize() : 0;

    double rvec_array[3], translation_vector[3];

    rvec_array[0] = mControlWidget->getCalibExtrRot1();
    rvec_array[1] = mControlWidget->getCalibExtrRot2();
    rvec_array[2] = mControlWidget->getCalibExtrRot3();

    Mat rvec(3,1,CV_64F, rvec_array), rot_inv;
    Mat rot_mat(3,3,CV_64F), e(3,3,CV_64F);
    // Transform the rotation vector into a rotation matrix with opencvs rodrigues method
    Rodrigues(rvec,rot_mat);

    // use inverse Matrix to get translation_vector?
    rot_inv = rot_mat.inv(DECOMP_SVD);

    e = rot_inv*rot_mat;

    translation_vector[0] =
            rot_mat.at<double>(0,0)*mControlWidget->getCalibExtrTrans1()+
            rot_mat.at<double>(0,1)*mControlWidget->getCalibExtrTrans2()+
            rot_mat.at<double>(0,2)*mControlWidget->getCalibExtrTrans3();
    translation_vector[1] =
            rot_mat.at<double>(1,0)*mControlWidget->getCalibExtrTrans1()+
            rot_mat.at<double>(1,1)*mControlWidget->getCalibExtrTrans2()+
            rot_mat.at<double>(1,2)*mControlWidget->getCalibExtrTrans3();
    translation_vector[2] =
            rot_mat.at<double>(2,0)*mControlWidget->getCalibExtrTrans1()+
            rot_mat.at<double>(2,1)*mControlWidget->getCalibExtrTrans2()+
            rot_mat.at<double>(2,2)*mControlWidget->getCalibExtrTrans3();

    if( debug )
    {
    cout << "\n-.- ESTIMATED ROTATION\n";
    for ( size_t p=0; p<3; p++ )
        printf("%20.18f, %20.18f, %20.18f\n",rot_mat.at<double>(p,0),rot_mat.at<double>(p,1),rot_mat.at<double>(p,2));
        //cout << rot_mat.at<double>(p,0) << " , " << rot_mat.at<double>(p,1) << " , " << rot_mat.at<double>(p,2) << "\n";

    cout << "\n-.- ESTIMATED ROTATION^-1\n";
    for ( size_t p=0; p<3; p++ )
        printf("%20.18f, %20.18f, %20.18f\n",rot_inv.at<double>(p,0),rot_inv.at<double>(p,1),rot_inv.at<double>(p,2));
        //cout << rot_inv.at<double>(p,0) << " , " << rot_inv.at<double>(p,1) << " , " << rot_inv.at<double>(p,2) << "\n";

    cout << "\n-.- ESTIMATED R^-1*R\n";
    for ( size_t p=0; p<3; p++ )
        printf("%20.18f, %20.18f, %20.18f\n",e.at<double>(p,0),e.at<double>(p,1),e.at<double>(p,2));
        //cout << e.at<double>(p,0) << " , " << e.at<double>(p,1) << " , " << e.at<double>(p,2) << "\n";

    cout << "\n-.- ESTIMATED TRANSLATION\n";
    printf("%20.15f, %20.15f, %20.15f\n",translation_vector[0],translation_vector[1],translation_vector[2]);
    //cout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << "\n";

    //cout << this->translation_vector[0] << " = " << translation_vector[0] << endl;
    //cout << this->translation_vector[1] << " = " << translation_vector[1] << endl;
    //cout << this->translation_vector[2] << " = " << translation_vector[2] << endl;
    }
    Point3f point3D;

    point3D.x =
            rot_mat.at<double>(0,0) * p3d.x +
            rot_mat.at<double>(0,1) * p3d.y +
            rot_mat.at<double>(0,2) * p3d.z +
            translation_vector[0];
    point3D.y =
            rot_mat.at<double>(1,0) * p3d.x +
            rot_mat.at<double>(1,1) * p3d.y +
            rot_mat.at<double>(1,2) * p3d.z +
            translation_vector[1];
    point3D.z =
            rot_mat.at<double>(2,0) * p3d.x +
            rot_mat.at<double>(2,1) * p3d.y +
            rot_mat.at<double>(2,2) * p3d.z +
            translation_vector[2];

    if( debug ) cout << "###### After extern calibration: (" << point3D.x << ", " << point3D.y << ", " << point3D.z << ")" << endl;

    Point2f point2D = Point2f( 0.0, 0.0 );
    if ( point3D.z != 0 )
    {
        point2D.x = (mControlWidget->fx->value() * point3D.x) / point3D.z + (mControlWidget->cx->value()-bS);
        point2D.y = (mControlWidget->fy->value() * point3D.y) / point3D.z + (mControlWidget->cy->value()-bS);
    }
    if (false && bS > 0)
    {
        point2D.x += bS;
        point2D.y += bS;
    }
    return point2D;
}
/**
  * Methode get3DPoint
  * Wandelt einen 2D-Punkt in einen 3D Punkt um
  * Dazu muss der 2D-Pixelpunkt sowie der Abstand
  * des 2D-Punktes zur xy-Ebene angegeben werden (i.d.R. die Hoehe/Personengroesse)
  *
  * Input: p2d = 2D Pixelpunkt (Uebergabe ohne Border)
  *        h = Abstand des Punktes zur xy-Ebene
  *
  * Output: Point3f resultPoint gibt den berechneten 3D-Punkt zurueck
  *
  */

Point3f ExtrCalibration::get3DPoint(Point2f p2d, double h)
{
        bool debug = false;
//        bool debug = true;

        if( debug ) cout << "get3DPoint: Start Point2D: (" << p2d.x << ", " << p2d.y << ") h: " << h << endl;

        int bS = mMainWindow->getImage() ? mMainWindow->getImageBorderSize() : 0;

        if (false && bS > 0)
        {
            p2d.x += bS;
            p2d.y += bS;
        }

        // Ergebnis 3D-Punkt
        Point3f resultPoint, tmpPoint;

        bool newMethod = true;
        /////////////// Start new method
        if( newMethod )
        {
        double rvec_array[3], translation_vector[3];
        rvec_array[0] = mControlWidget->getCalibExtrRot1();
        rvec_array[1] = mControlWidget->getCalibExtrRot2();
        rvec_array[2] = mControlWidget->getCalibExtrRot3();

        Mat rvec(3,1,CV_64F, rvec_array), rot_inv;
        Mat rot_mat(3,3,CV_64F), e(3,3,CV_64F);
        // Transform the rotation vector into a rotation matrix with opencvs rodrigues method
        Rodrigues(rvec,rot_mat);

        translation_vector[0] =
                rot_mat.at<double>(0,0)*mControlWidget->getCalibExtrTrans1()+
                rot_mat.at<double>(0,1)*mControlWidget->getCalibExtrTrans2()+
                rot_mat.at<double>(0,2)*mControlWidget->getCalibExtrTrans3();
        translation_vector[1] =
                rot_mat.at<double>(1,0)*mControlWidget->getCalibExtrTrans1()+
                rot_mat.at<double>(1,1)*mControlWidget->getCalibExtrTrans2()+
                rot_mat.at<double>(1,2)*mControlWidget->getCalibExtrTrans3();
        translation_vector[2] =
                rot_mat.at<double>(2,0)*mControlWidget->getCalibExtrTrans1()+
                rot_mat.at<double>(2,1)*mControlWidget->getCalibExtrTrans2()+
                rot_mat.at<double>(2,2)*mControlWidget->getCalibExtrTrans3();

        // use inverse Matrix
        rot_inv = rot_mat.inv(DECOMP_LU);
        e = rot_inv*rot_mat;

        if( debug )
        {
        debout << "\n-.- ESTIMATED ROTATION\n";
        for ( size_t p=0; p<3; p++ )
            printf("%20.18f, %20.18f, %20.18f\n",rot_mat.at<double>(p,0),rot_mat.at<double>(p,1),rot_mat.at<double>(p,2));
            //cout << rot_mat.at<double>(p,0) << " , " << rot_mat.at<double>(p,1) << " , " << rot_mat.at<double>(p,2) << "\n";

        debout << "\n-.- ESTIMATED ROTATION^-1\n";
        for ( size_t p=0; p<3; p++ )
            printf("%20.18f, %20.18f, %20.18f\n",rot_inv.at<double>(p,0),rot_inv.at<double>(p,1),rot_inv.at<double>(p,2));
            //cout << rot_inv.at<double>(p,0) << " , " << rot_inv.at<double>(p,1) << " , " << rot_inv.at<double>(p,2) << "\n";

        debout << "\n-.- ESTIMATED R^-1*R\n";
        for ( size_t p=0; p<3; p++ )
            printf("%20.18f, %20.18f, %20.18f\n",e.at<double>(p,0),e.at<double>(p,1),e.at<double>(p,2));
            //cout << e.at<double>(p,0) << " , " << e.at<double>(p,1) << " , " << e.at<double>(p,2) << "\n";

        debout << "\n-.- ESTIMATED TRANSLATION\n";
        debout << mControlWidget->getCalibExtrTrans1() << " , " << mControlWidget->getCalibExtrTrans2() << " , " << mControlWidget->getCalibExtrTrans3() << "\n";
        debout << translation_vector[0] << " , " << translation_vector[1] << " , " << translation_vector[2] << "\n";

        debout << "Det(rot_mat): "<< determinant(rot_mat) << endl;
        debout << "Det(rot_inv): "<< determinant(rot_inv) << endl;
        }
        double z = h + rot_inv.at<double>(2,0)*translation_vector[0] +
                       rot_inv.at<double>(2,1)*translation_vector[1] +
                       rot_inv.at<double>(2,2)*translation_vector[2];
        if( debug )
        {
        debout << "##### z: " << h << " + " << rot_inv.at<double>(2,0) << "*" << translation_vector[0] << " + "
                                          << rot_inv.at<double>(2,1) << "*" << translation_vector[1] << " + "
                                          << rot_inv.at<double>(2,2) << "*" << translation_vector[2] << " = " << z << endl;
        }
        z /= (rot_inv.at<double>(2,0)*(p2d.x-/*bS)-(*/(mControlWidget->getCalibCxValue()-bS)/*-bS*/)/mControlWidget->getCalibFxValue() +
                 rot_inv.at<double>(2,1)*(p2d.y-/*bS)-(*/(mControlWidget->getCalibCyValue()-bS)/*-bS*/)/mControlWidget->getCalibFyValue() +
                 rot_inv.at<double>(2,2));
        if( debug ) cout << "###### z: "<< z << endl;

        resultPoint.x = (p2d.x-/*bS)-(*/(mControlWidget->getCalibCxValue()-bS)/*-bS*/);
        resultPoint.y = (p2d.y-/*bS)-(*/(mControlWidget->getCalibCyValue()-bS)/*-bS*/);
        resultPoint.z = z;

        if( debug ) cout << "###### (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;

        resultPoint.x = resultPoint.x * z/mControlWidget->getCalibFxValue();
        resultPoint.y = resultPoint.y * z/mControlWidget->getCalibFyValue();

        if( debug ) cout << "###### After intern re-calibration: (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;

        tmpPoint.x = resultPoint.x - translation_vector[0];
        tmpPoint.y = resultPoint.y - translation_vector[1];
        tmpPoint.z = resultPoint.z - translation_vector[2];

        if( debug ) cout << "###### After translation: (" << tmpPoint.x << ", " << tmpPoint.y << ", " << tmpPoint.z << ")" << endl;

        resultPoint.x = rot_inv.at<double>(0,0)*(tmpPoint.x)+
                        rot_inv.at<double>(0,1)*(tmpPoint.y)+
                        rot_inv.at<double>(0,2)*(tmpPoint.z);
        resultPoint.y = rot_inv.at<double>(1,0)*(tmpPoint.x)+
                        rot_inv.at<double>(1,1)*(tmpPoint.y)+
                        rot_inv.at<double>(1,2)*(tmpPoint.z);
        resultPoint.z = rot_inv.at<double>(2,0)*(tmpPoint.x)+
                        rot_inv.at<double>(2,1)*(tmpPoint.y)+
                        rot_inv.at<double>(2,2)*(tmpPoint.z);

        if( debug ) cout << "#resultPoint: (" << resultPoint.x << ", " << resultPoint.y << ", " << resultPoint.z << ")" << endl;
        if( debug ) cout << "Coord Translation: x: " << mControlWidget->getCalibCoord3DTransX() << ", y: " << mControlWidget->getCalibCoord3DTransY() << ", z: " << mControlWidget->getCalibCoord3DTransZ() << endl;


        // Coordinate Transformations

        resultPoint.x -= mControlWidget->getCalibCoord3DTransX();
        resultPoint.y -= mControlWidget->getCalibCoord3DTransY();
        resultPoint.z -= mControlWidget->getCalibCoord3DTransZ();

        resultPoint.x *= mControlWidget->getCalibCoord3DSwapX() ? -1 : 1;
        resultPoint.y *= mControlWidget->getCalibCoord3DSwapY() ? -1 : 1;
        resultPoint.z *= mControlWidget->getCalibCoord3DSwapZ() ? -1 : 1;


        }else//////////////// End new method
        {
        //////////////// Start old method

        Point3f camInWorld = transformRT(Point3f(0,0,0));

        // 3D-Punkt vor der Kamera mit Tiefe 5
        CvPoint3D32f pointBeforeCam;
        pointBeforeCam.x = (p2d.x - mControlWidget->cx->value()) / mControlWidget->fx->value() * 50;
        pointBeforeCam.y = (p2d.y - mControlWidget->cy->value()) / mControlWidget->fy->value() * 50;
        pointBeforeCam.z = 50;
        if( debug ) cout << "Point before Camera: [" << pointBeforeCam.x << ", " << pointBeforeCam.y << ", " << pointBeforeCam.z << "]" << endl;
        // 3D-Punkt vor Kamera in Weltkoordinaten
        Point3f pBCInWorld = transformRT(pointBeforeCam);
d.kilic's avatar
d.kilic committed
        if( debug ) cout << "Point before Camera in World-Coordinatesystem: [" << pBCInWorld.x << ", " << pBCInWorld.y << ", " << pBCInWorld.z << "]" << endl;
        if( debug ) cout << "Camera in World-Coordinatesystem: [" << camInWorld.x << ", " << camInWorld.y << ", " << camInWorld.z << "]" << endl;
        // Berechnung des Richtungsvektors der Gerade von der Kamera durch den Pixel
        // Als Sttzvektor der Geraden wird die Position der Kamera gewhlt
        pBCInWorld.x -= camInWorld.x;
        pBCInWorld.y -= camInWorld.y;
        pBCInWorld.z -= camInWorld.z;
        if( debug ) cout << "G:x = (" << camInWorld.x << " / " << camInWorld.y << " / " << camInWorld.z << ") + lambda (" << pBCInWorld.x << " / " << pBCInWorld.y << " / " << pBCInWorld.z << ")" << endl;

        // Berechnung des Schnittpunktes: Hier lambda von der Geraden
        double lambda = (h -camInWorld.z) / (pBCInWorld.z);
        if( debug ) cout << "Lambda: " << lambda << endl;

        // Lambda in Gerade einsetzen
        resultPoint.x = (mControlWidget->getCalibCoord3DSwapX() ? -1 : 1) * (camInWorld.x + lambda * pBCInWorld.x);
        resultPoint.y = (mControlWidget->getCalibCoord3DSwapY() ? -1 : 1) * (camInWorld.y + lambda * pBCInWorld.y);
        resultPoint.z = (mControlWidget->getCalibCoord3DSwapZ() ? -1 : 1) * (camInWorld.z + lambda * pBCInWorld.z);

        }//////////////// End old method

        return resultPoint;
}
/**
  * Transformiert den angegebenen 3D-Punkt mit der Rotation und Translation
  * um Umrechnungen zwischen verschiedenen Koordinatensystemen zu ermglichen
  */
Point3f ExtrCalibration::transformRT(Point3f p)
{
    // ToDo: use projectPoints();

    double rvec_array[3], rotation_matrix[9];
    rvec_array[0] = mControlWidget->getCalibExtrRot1();
    rvec_array[1] = mControlWidget->getCalibExtrRot2();
    rvec_array[2] = mControlWidget->getCalibExtrRot3();

    Mat rvec(3,1,CV_64F, rvec_array);
    Mat rot_mat(3,3,CV_64F);
    // Transform the rotation vector into a rotation matrix with opencvs rodrigues method
    Rodrigues(rvec,rot_mat);

    rotation_matrix[0] = rot_mat.at<double>(0,0);
    rotation_matrix[1] = rot_mat.at<double>(0,1);
    rotation_matrix[2] = rot_mat.at<double>(0,2);
    rotation_matrix[3] = rot_mat.at<double>(1,0);
    rotation_matrix[4] = rot_mat.at<double>(1,1);
    rotation_matrix[5] = rot_mat.at<double>(1,2);
    rotation_matrix[6] = rot_mat.at<double>(2,0);
    rotation_matrix[7] = rot_mat.at<double>(2,1);
    rotation_matrix[8] = rot_mat.at<double>(2,2);

    Point3f point3D;

    point3D.x = rotation_matrix[0] * p.x +
            rotation_matrix[3] * p.y +
            rotation_matrix[6] * p.z -
            mControlWidget->trans1->value();//translation_vector2[0];
    point3D.y = rotation_matrix[1] * p.x +
            rotation_matrix[4] * p.y +
            rotation_matrix[7] * p.z -
            mControlWidget->trans2->value();//translation_vector2[1];
    point3D.z = rotation_matrix[2] * p.x +
            rotation_matrix[5] * p.y +
            rotation_matrix[8] * p.z -
            mControlWidget->trans3->value();//translation_vector2[2];
    return point3D;
}
bool ExtrCalibration::isOutsideImage(Point2f p2d)
{
    int bS = mMainWindow->getImage() ? mMainWindow->getImageBorderSize() : 0;
    if( mMainWindow->getImage())
    {
        if( !isnormal(p2d.x) || !isnormal(p2d.y) || !isnormal(p2d.x) || !isnormal(p2d.y) )
            return true;
        if (isnan(p2d.x) || isnan(p2d.y) || isinf(p2d.x) || isinf(p2d.y))
            return true;
        //return p2d.x < 0 || p2d.x > mMainWindow->getImage()->width() || p2d.y < 0 || p2d.y > mMainWindow->getImage()->height();
        return p2d.x < -bS || p2d.x > mMainWindow->getImage()->width()-bS || p2d.y < -bS || p2d.y > mMainWindow->getImage()->height()-bS;
    }else
    {
        return false;
    }
}