Skip to content
Snippets Groups Projects
Commit d1f36f0a authored by Wuttke, Joachim's avatar Wuttke, Joachim
Browse files

DevRef...; gitignore + nls

parent b207dc0e
No related branches found
No related tags found
1 merge request!1662DevRef ctd; gitignore + .nls
Pipeline #101057 failed
......@@ -15,6 +15,7 @@
*.ind
*.log
*.nlo
*.nls
*.out
*.toc
*.trs
......
No preview for this file type
......@@ -21,8 +21,8 @@
% makeindex -s nomencl.ist $T.nlo -o $T.nls
% xelatex $T
\documentclass[a4paper,11pt,fleqn]{report}\usepackage[final]{graphicx}
%\documentclass[a4paper,11pt,fleqn,draft]{report}\usepackage[final]{graphicx}
%\documentclass[a4paper,11pt,fleqn]{report}\usepackage[final]{graphicx}
\documentclass[a4paper,11pt,fleqn,draft]{report}\usepackage[final]{graphicx}
%\documentclass[a4paper,11pt,fleqn,draft]{report}\usepackage[draft]{graphicx}
\def\shorttitle{BornAgain Developers Reference}
......
......@@ -45,6 +45,8 @@ How to account for these losses in the R/T computation is an open research quest
\subsection{Interface with tanh profile}
%==================================================================================================%
\def\RF{\mathcal{R}}
Graded interfaces have a smooth SLD profile,
i.e.\ the function $\overline{v}(z)$ or $\kappa^2(z)$ evolves continuously
from one bulk value to the other.
......@@ -113,42 +115,25 @@ with $x\coloneqq \pi\tau\kappa_a$ and $y\coloneqq \pi\tau\kappa_b$.
We write $\text{tanhc}\; x \coloneqq (\tanh x)/x$ (\cref{Ftanhc}a)
and define the roughness factor
\begin{equation}\label{ERba}
R_{ab} \coloneqq \sqrt{ \frac{\text{tanhc}\; \pi\tau\kappa_b}{\text{tanhc}\; \pi\tau\kappa_a } }.
\RF_{ab} \coloneqq \sqrt{ \frac{\text{tanhc}\; \pi\tau\kappa_b}{\text{tanhc}\; \pi\tau\kappa_a } }.
\end{equation}
With all this, \cref{ErTanh} can be cast as
\begin{equation}\label{ErTanh2}
r_{ab} = \frac{R_{ab}^{-1}\kappa_a - R_{ab} \kappa_b}{R_{ab}^{-1}\kappa_a + R_{ab}\kappa_b},
r_{ab} = \frac{\RF_{ab}^{-1}\kappa_a - \RF_{ab} \kappa_b}{\RF_{ab}^{-1}\kappa_a + \RF_{ab}\kappa_b},
\end{equation}
which has the form of the Fresnel reflection coefficient~\cref{ErFresnel},
except for the factors $R_{ab}^{-1}$ and $R_{ab}$.
except for the factors $\RF_{ab}^{-1}$ and $\RF_{ab}$.
For $\tau\to0$, these factors go to~1 so that \cref{ErFresnel} is fully recovered
(\cref{Ftanhc}b).
Neglecting again the phase factor, we can compute the transmission coefficient
from \cref{EConservation}. We obtain
\begin{equation}\label{EtTanh2}
t_{ab} = \frac{2\kappa_a}{R_{ab}^{-1}\kappa_a + R_{ab}\kappa_b}.
\end{equation}
\textbf{TODO: Is this correct? Is this implemented in BornAgain?}
Tests confirm that flux conservation is fulfilled at machine precision.\footnote
{\textbf{TODO:} provide name of tests.}
With the Fresnel coefficients \cref{EtFresnel,ErFresnel},
we write the refraction matrix as
\begin{equation}\label{ESab2}
S_{ab}
\coloneqq
\frac{1}{t_{ab}}
\left(\begin{array}{ll}
1&r_{ab}\\
r_{ab}&1
\end{array}\right).
\end{equation}
This form remains valid for our modified coefficients \cref{ErTanh2} and~\cref{EtTanh2}.
Accordingly, the coefficients~\cref{Dslpm} must be replaced by
The reduced $r_{ab}$ of \cref{ErTanh2} can be obtained from
the basic transfer matrix equation~\cref{EcMc}
if the coefficients~$s^\pm$ of \cref{Dslpm} are replaced by\footnote
{Implemented in file \SRC{Resample/Specular}{ComputeFluxScalar.cpp},
function \T{transition} [30may23].}
\begin{equation}\label{EslpmTanh}
s^\pm_l = R_{l,l-1}^{-1} \pm R_{l,l-1}\kappa_{l-1}/\kappa_l.
s^\pm_a = \RF_{ab}^{-1} \pm \RF_{ab}\kappa_{b}/\kappa_a.
\end{equation}
It is easily verified that the energy conservation~\cref{EConservation} still holds.
%==================================================================================================%
\subsection{N\'evot-Croce factor}
......@@ -180,11 +165,13 @@ where $t_{ab}$ is the Fresnel coefficient \cref{EtFresnel}.
This is the result obtained by Tolan \cite[Eq.~2.35]{Tol99},
and is also given by de Boer \cite{BoLe96} as a result from formal perturbation theory
in the limit of very small lateral correlation length.
With \cref{ESab2}, we obtain the coefficients to replace~\cref{Dslpm},
To obtain $\tilde r_{ab}$ and $\tilde t_{ab}$ from
the basic transfer matrix equation~\cref{EcMc},
we need to replace the coefficients $s^\pm$ of~\cref{Dslpm} by
\begin{equation}\label{EslpmNC}
s^\pm_l = (1 \pm \kappa_{l-1}/\kappa_l) \exp(-(\kappa_{l-1}\mp\kappa_l)^2\sigma^2/2),
\end{equation}
which shows that the above is also consistent with \cite[Eq.~3.114]{GiVi09}.
which is consistent with \cite[Eq.~3.114]{GiVi09}.
However, the total reflected and transmitted flux
$\kappa_a|\tilde r_{ab}|^2+\kappa_b|\tilde t_{ab}|^2$,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment