Skip to content
Snippets Groups Projects
Commit 79825ae7 authored by Van Herck, Walter's avatar Van Herck, Walter
Browse files

Updates formulas of (anisotropic) pyramid form factor in user manual

parent ff87d490
No related branches found
No related tags found
No related merge requests found
...@@ -1082,34 +1082,21 @@ They must fulfill ...@@ -1082,34 +1082,21 @@ They must fulfill
\paragraph{Form factor etc}\strut\\ \paragraph{Form factor etc}\strut\\
Notation: Notation:
\begin{displaymath} \begin{displaymath}
\ell\coloneqq L/2,\quad a\coloneqq q_x/\tan\alpha,\quad
h\coloneqq H/2,\quad b\coloneqq q_y/\tan\alpha,\quad
f_\pm(z)\coloneqq \exp(\pm i z)\sinc(z). c\coloneqq q_z.
\end{displaymath} \end{displaymath}
Results: Results:
\begin{equation*} \begin{equation*}
\begin{array}{@{}l@{}l@{}} \DS F= \frac{\exp(iq_zL\tan\alpha/2)}{\tan^2\alpha} \Big\{ I_p(H-L\tan\alpha/2) - I_p(-L\tan\alpha/2) \Big\}
\DS F=
\frac{H}{q_xq_y} \Big\{
&+\DS f_+\left(\left(\frac{q_x-q_y}{\tan\alpha} +q_z\right)h\right)
\exp(-i(q_x-q_y)\ell)
\\[3.6ex]
&\DS+ f_-\left(\left(\frac{q_x-q_y}{\tan\alpha} -q_z\right)h\right)
\exp(+i(q_x-q_y)\ell)
\\[3.6ex]
&\DS- f_+\left(\left(\frac{q_x+q_y}{\tan\alpha} +q_z\right)h\right)
\exp(-i(q_x+q_y)\ell)
\\[3.6ex]
&\DS- f_-\left(\left(\frac{q_x+q_y}{\tan\alpha} -q_z\right)h\right)
\exp(+i(q_x+q_y)\ell)
\Big\},
\end{array}
\end{equation*} \end{equation*}
Where $I_p(z)$ is an antiderivative for the final z--integration in the Fourier transform of the non--truncated pyramid shape function:
\begin{equation*} \begin{equation*}
V= H \Big[L^2 - \frac{2LH}{\tan\alpha} + \dfrac{4}{3} \dfrac{H^2}{\tan^2\alpha}\Big]. \begin{array}{@{}l@{}l@{}}
\end{equation*} \DS I_p(z) = & 4\exp(icz)\Big\{ \sin(az)\big[b(a^2-b^2+c^2)\cos(bz) + ic(a^2+b^2-c^2)\sin(bz)\big] \\
\begin{equation*} & +a\cos(az)\big[(-a^2+b^2+c^2)\sin(bz) + 2ibc\cos(bz) \big] \Big\} \\
S=L^2. & / \Big\{ab\big[(a+b)^2-c^2\big]\big[(a-b)^2-c^2\big]\Big\}
\end{array}
\end{equation*} \end{equation*}
\begin{equation*} \begin{equation*}
V = \dfrac{1}{6} L^3 \tan\alpha\left[ 1 V = \dfrac{1}{6} L^3 \tan\alpha\left[ 1
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment