Skip to content
Snippets Groups Projects
Commit 7784c9dd authored by Wuttke, Joachim's avatar Wuttke, Joachim
Browse files

Reflection and refraction of X-rays almost complete; polarization

factors not at all; TODO: first write cross section as sum over outgoing
polarization states.
parent b42cdd53
No related branches found
No related tags found
No related merge requests found
......@@ -660,7 +660,7 @@ In the case of a semi-infinite layer, the vertical component becomes zero and
\index{Total reflection}%
%===============================================================================
\subsection{Polarization factors for X-rays}\label{SXpolfac}
\subsection{Modifications for X-rays}\label{SmulayX}
%===============================================================================
\def\Ep{\v{\Phi}}
......@@ -678,14 +678,6 @@ the vertical wavefunction is
\begin{equation}
\Ep^\pm_l(z) = \v{A}^\pm_l \e^{\pm ik_\perp(z-z_l)}\chi_l(z).
\end{equation}
The DWBA matrix element is
\begin{equation}\label{Edwba_mlE}
\bra \v{E}_\si|\delta v|\v{E}_\sf\ket
= \sum_l \sum_{u} C^u_l \delta v_l(\q_l^u).
\end{equation}
in full analogy with~\cref{Edwba_ml},
but the coefficients are now scalar products
$C^1=\v{A}^{-*}_\si\v{A}^{+}_\sf$ etc.\ instead of the products of scalar factors in~\cref{Eudef}.
%--------------------------------------------------------------------------------
\begin{figure}[tb]
......@@ -704,17 +696,15 @@ In either case, $\v{E}$ is perpendicular to the wavevector~$\k$.}
\end{figure}
%--------------------------------------------------------------------------------
Furthermore, the vectorial character of $\v{A}^\pm_{wl}$ will also require
changes in~\cref{Sacrolay}.
The vectorial character of $\v{A}^\pm_{wl}$ will require changes in~\cref{Sacrolay}.
For electromagnetic radiation in nonmagnetic media,
the boundary conditions at an interface with normal $\hn$ are\footnote
{See textbooks like Jackson \cite[eq. 7.37]{Jac75}, Born \& Wolf \cite[ch.~1.1.3]{BoWo99}, or
Hecht \cite[ch.~4.6.1]{Hec02}.}
the boundary conditions at an interface with normal $\hn$ are \cite[eq. 7.37]{Jac75}
% , Born \& Wolf \cite[ch.~1.1.3]{BoWo99}, or Hecht \cite[ch.~4.6.1]{Hec02}.}
\nomenclature[2n04]{$\hn$}{Normal vector of an interface}
\begin{align}
&\sum_\pm\overline{\epsilon}\v{E}^\pm\hn = \text{const}, \label{EbcE1}\\[1.4ex]
&\sum_\pm\v{E}^\pm\times\hn = \text{const}, \label{EbcE2}\\[1.4ex]
&\sum_\pm\left(\k^\pm_l\times\v{E}^\pm\right)\hn = \text{const}. \label{EbcE3}
&\sum_\pm\,\overline{\epsilon}\,\v{E}^\pm\,\hn = \text{const}, \label{EbcE1}\\[1.4ex]
&\sum_\pm\,\v{E}^\pm\times\hn = \text{const}, \label{EbcE2}\\[1.4ex]
&\sum_\pm\,\k^\pm_l\times\v{E}^\pm = \text{const}. \label{EbcE3}
\end{align}
We will only consider the two polarization directions,
\index{Convention!p- and s-polarization}%
......@@ -728,10 +718,66 @@ meaning that if both incoming fields $\v{E}^-_{l-1}$ and~$\v{E}^+_l$ are strictl
polarized in either $p$ or $s$ direction,
then the outgoing fields $\v{E}^+_{l-1}$ and~$\v{E}^-_l$
are polarized in the same direction.
Conversely, if the incoming fields are mixtures of $p$ and $s$ polarization,
then the outgoing fields will be, in general, mixed differently.
Therefore if polarization factors are quantitatively important in an experiment,
one should strive to accurately polarize the incident beam in $p$ or $s$ direction
in order to avoid the extra complication of variably mixed polarizations.
Further algebra on \cref{EbcE1,EbcE2,EbcE3} replicates the
reflection law that relates $\k^-$ and $k^+$
and Snell's law~\cref{ESnell}.
Taking these for granted,
we only retain equations that are needed to determine the field amplitudes~$E^\pm$.
For $p$~polarization they yield
\begin{equation}
\left(\begin{array}{cc}k&k\\
-k_\perp/k&k_\perp/k\end{array}\right)
\left(\begin{array}{c}E^-\\
E^+\end{array}\right) = \text{const},
\end{equation}
and for $s$~polarization
\begin{equation}
\left(\begin{array}{cc}1&1\\
-k_\perp&k_\perp\end{array}\right)
\left(\begin{array}{c}E^-\\
E^+\end{array}\right) = \text{const}.
\end{equation}
The latter equation can be brought into the form~\cref{Econt2}.
In consequence,
$s$-polarized X-rays are refracted and reflected in
exactly the same ways as unpolarized neutrons.
For $p$ polarization, the transfer matrix~\cref{EMil}
must be replaced by
\begin{equation}
M_l^{\text(p)} = TODO,
\end{equation}
\Work{In BornAgain, this modified transfer matrix is not yet implemented;
only $s$ polarized X-rays are currently supported.}
In the simpler case of~$s$ polarization,
\Work{The following paragraph on polarization factors shall be worked out next:}
In $s$~geometry the coefficients $C^u_l$ of \Cref{Edwba_mlE}
are given by simple products of scalar amplitudes as in~\cref{Eudef}.
\Work{In BornAgain, the $p$ polarization factors are not yet implemented.}
The DWBA matrix element is
\begin{equation}\label{Edwba_mlE}
\bra \v{E}_\si|\delta v|\v{E}_\sf\ket
= \sum_l \sum_{u} C^u_l \delta v_l(\q_l^u).
\end{equation}
in full analogy with~\cref{Edwba_ml},
but the coefficients are now scalar products
$C^1=\v{A}^{-*}_\si\v{A}^{+}_\sf$ etc.\ instead of the products of scalar factors in~\cref{Eudef}.
and the coefficients of \Cref{Edwba_mlE} are
\begin{equation}
\begin{array}{@{}lcl}
C^1 &=& A^{-*}_\si A^+_\sf,\\
C^2 &=& A^{-*}_\si A^-_\sf\cos(\alpha_-+\alpha_+),\\
C^3 &=& A^{+*}_\si A^+_\sf\cos(\alpha_-+\alpha_+),\\
C^4 &=& A^{+*}_\si A^-_\sf.
\end{array}
\end{equation}
\Work{In BornAgain, polarization factors are not yet implemented.}
%===============================================================================
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment