Skip to content
Snippets Groups Projects
Commit 639b4e7d authored by Wuttke, Joachim's avatar Wuttke, Joachim
Browse files

hugo: mv all drawings to static/img/draw

parent d54e292a
No related branches found
No related tags found
1 merge request!1489webdoc: all images moved to static/img, except for installation instructions. rm some unused images. rm exported pdf and ps
Showing
with 20 additions and 20 deletions
......@@ -15,7 +15,7 @@ In consequence, there are no reflections,
and therefore the DWBA boils down to the ordinary Born approximation.
{{< galleryscg >}}
{{< figscg src="CylindersInBA_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CylindersInBA_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/CylindersInBA.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -11,7 +11,7 @@ we take a standard sample model from module
a dilute random assembly of monodisperse cylindrical disks on a substrate.
{{< galleryscg >}}
{{< figscg src="CylindersInDWBA_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CylindersInDWBA_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/Cylinders.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -8,7 +8,7 @@ weight = 30
This is an example of a real data fit. We use our own measurements performed at the laboratory diffractometer [GALAXI](http://www.fz-juelich.de/jcns/jcns-2//DE/Leistungen/GALAXI/_node.html) in Forschungszentrum Jülich.
{{< galleryscg >}}
{{< figscg src="FitGALAXIData_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/FitGALAXIData_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="FitGALAXIData.png" width="350px" caption="Fit window">}}
{{< /galleryscg >}}
......
......@@ -18,7 +18,7 @@ The DWBA simulation is shown for a standard sample model:
hence there is no interference between scattered waves.
{{< galleryscg >}}
{{< figscg src="BeamDivergence_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/BeamDivergence_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/BeamDivergence.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -15,7 +15,7 @@ Scattering from elongated particles positioned in a two-dimensional rectangular
* The incident angles are $\alpha\_i = 0.3 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="CosineRipplesAtRectLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CosineRipplesAtRectLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/CosineRipplesAtRectLattice.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -15,8 +15,8 @@ In this example we simulate the scattering from infinite 1D repetition of rectan
* To avoid the problem of rapidly oscillating form factors of long boxes (see [this example](/ref/sim/setup/options/mc) for more details), the simulation is performed in monte carlo integration mode.
{{< galleryscg >}}
{{< figscg src="Interference1DLattice_setup.jpg" width="200px" caption="Real-space model">}}
{{< figscg src="Interference1DLattice_sketch.jpg" width="200px" caption="Sketch">}}
{{< figscg src="/img/draw/Interference1DLattice_setup.jpg" width="200px" caption="Real-space model">}}
{{< figscg src="/img/draw/Interference1DLattice_sketch.jpg" width="200px" caption="Sketch">}}
{{< figscg src="/img/auto/scatter2d/Interference1DLattice.png" width="200px" caption="Intensity image">}}
{{< /galleryscg >}}
......@@ -27,7 +27,7 @@ In this example we simulate the scattering from infinite 1D repetition of rectan
A one dimensional lattice can be viewed as a chain of particles placed at regular intervals on a single axis. The plot below represents one possible use case, where infinitely long (or very long) boxes are placed at nodes of a 1d lattice to form a grating.
{{< figscg src="particles_at_1d_latice.jpg" width="600px" class="center">}}
{{< figscg src="/img/draw/particles_at_1d_latice.jpg" width="600px" class="center">}}
See the BornAgain user manual (Chapter 3.4.1, One Dimensional Lattice) for details about the theory.
......
......@@ -18,7 +18,7 @@ Scattering from a mixture of cylinders and prisms without interference.
* The simulation is performed using the Distorted Wave Born Approximation (due to the presence of a substrate).
{{< galleryscg >}}
{{< figscg src="CylindersAndPrisms_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CylindersAndPrisms_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/CylindersAndPrisms.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -7,7 +7,7 @@ weight = 20
The interference function of a two-dimensional lattice is used to model the scattering from particles positioned at some regular intervals.
{{< figscg src="particles_at_lattice.jpg" width="600px" class="center">}}
{{< figscg src="/img/draw/particles_at_lattice.jpg" width="600px" class="center">}}
The generated layout, the lattice, is characterised by two basis vectors $a$ and $b$ (in real space) and the angle between these two vectors. The finite size effects and/or divergence of the lattice from an ideal crystal are modelled with the help of two-dimensional decay functions.
......
......@@ -16,7 +16,7 @@ Scattering from two hexagonal close packed layers of spheres.
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="HexagonalLatticesWithBasis_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/HexagonalLatticesWithBasis_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/HexagonalLatticesWithBasis.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -10,7 +10,7 @@ whose main axes are rotated with respect to the reference cartesian frame.
{{< galleryscg >}}
{{< figscg src="Interference2DRotatedSquareLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/Interference2DRotatedSquareLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/Interference2DRotatedSquareLattice.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -14,7 +14,7 @@ and positioned in a hexagonal lattice.
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="SpheresAtHexLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/SpheresAtHexLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/SpheresAtHexLattice.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -16,7 +16,7 @@ Scattering from cylinders positioned in a squared centered lattice.
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="Interference2DCenteredSquareLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/Interference2DCenteredSquareLattice_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/Interference2DCenteredSquareLattice.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -15,7 +15,7 @@ Scattering from cuboidal core-shell particles.
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="CoreShellNanoparticles_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CoreShellNanoparticles_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/CoreShellNanoparticles.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -15,7 +15,7 @@ Scattering from a monodisperse distribution of particles, whose form factor is d
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="CustomFormFactor_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/CustomFormFactor_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/CustomFormFactor.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -15,7 +15,7 @@ Scattering from a sample containing spherical embedded particles.
* The incident angles are $\alpha\_i = 0.15 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="BuriedParticles_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/BuriedParticles_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/BuriedParticles.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -17,7 +17,7 @@ This example illustrates how the in-plane rotation of non-radially symmetric par
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="RotatedPyramids_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/RotatedPyramids_setup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/RotatedPyramids.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
hugo/content/ref/sample/roughness/scattering/CorrelatedRoughness_setup.jpg

281 KiB

......@@ -14,7 +14,7 @@ roughness is characterized by root-mean-square deviation from the mean surface p
$\sigma = 1$ nm.
{{< galleryscg >}}
{{< figscg src="SpecularSimulationWithRoughnessSetup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/draw/SpecularSimulationWithRoughnessSetup.jpg" width="350px" caption="Real-space model">}}
{{< figscg src="/img/auto/specular/SpecularSimulationWithRoughness.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
......@@ -27,7 +27,7 @@ The simulation generates four plots using different sizes of the particles, (rad
* The incident angles are $\alpha\_i = 0.2 ^{\circ}$ and $\varphi\_i = 0^{\circ}$.
{{< galleryscg >}}
{{< figscg src="LargeParticlesFormFactor_setup.jpg" width="700px" caption="Real-space model">}}
{{< figscg src="/img/draw/LargeParticlesFormFactor_setup.jpg" width="700px" caption="Real-space model">}}
{{< figscg src="/img/auto/scatter2d/LargeParticlesFormFactor.png" width="350px" caption="Intensity image">}}
{{< /galleryscg >}}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment