Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
BornAgain
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mlz
BornAgain
Commits
367d2c26
Commit
367d2c26
authored
1 year ago
by
Wuttke, Joachim
Browse files
Options
Downloads
Patches
Plain Diff
PhysRef: justify decomposition of \OPR\rho
parent
e2a91d89
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Doc/PhysRef/PhysRef.pdf
+0
-0
0 additions, 0 deletions
Doc/PhysRef/PhysRef.pdf
Doc/PhysRef/Polarized.tex
+16
-6
16 additions, 6 deletions
Doc/PhysRef/Polarized.tex
with
16 additions
and
6 deletions
Doc/PhysRef/PhysRef.pdf
+
0
−
0
View file @
367d2c26
No preview for this file type
This diff is collapsed.
Click to expand it.
Doc/PhysRef/Polarized.tex
+
16
−
6
View file @
367d2c26
...
...
@@ -659,22 +659,32 @@ function \T{Compute::magneticR} in file \SRC{Sim/Computation}{SpecularComputatio
%===============================================================================
As any other 2
$
\times
$
2 matrix,
the polariz
er density
operator
the polariz
ation
operator
\index
{
Polarization!density operator
}
%
can be written as
\begin{equation}
\label
{
DOprPi
}
\begin{equation}
\label
{
EdecomposePi
}
\OPR\Pi
= p
_
0
\OPR
1 +
\v
{
p
}
\Pauli
,
\end{equation}
and the polarizer density operator
\index
{
Polarization!density operator
}
%
as
\begin{equation}
\label
{
Edecompose1rho
}
\OPR\rho
= r
_
0
\OPR
1 +
\v
{
r
}
\Pauli
.
\end{equation}
From
\cref
{
Drhoi
}
or~
\cref
{
Drhof
}
, we know that
$
\OPR\rho
=
\OPR\Pi\,\OPR\Pi
^
+
$
.
Inserting
\cref
{
EdecomposePi
}
, we can conclude that
$
\OPR\rho
$
is Hermitean,
that
$
r
_
0
$
and~
$
\v
{
r
}$
are real,
and that
$
|
\v
{
r
}
|
\le
|r
_
0
|
$
.
This allow up to replace
\cref
{
Edecompose1rho
}
by
\begin{equation}
\label
{
Edecompose2rho
}
\OPR\rho
=
\left
(
\OPR
1 +
\v
{
P
}
\Pauli\right
)
\tau
.
\end{equation}
By construction
\cref
{
Drhoi
}
or~
\cref
{
Drhof
}
, it is Hermitean.
As the Pauli matrices are also Hermitean,
the parameters
$
\tau
$
and~
$
\v
{
P
}$
must be real.
We identify
$
\v
{
P
}$
as the
\textit
{
polarization vector
}
,
\index
{
Polarization!vector
}
%
and
$
\tau
$
as the
\textit
{
mean transmission
}
of an unpolarized beam;
it can take values between 0 and~1/2,
whereas the polarization strength
$
P
\coloneqq
|
\v
{
P
}
|
$
may take
values between 0 and~1.
For a source flux~
$
I
_
0
$
, the flux after a beam polarizer has the components
\begin{equation}
I
_
\pm
\coloneqq
\Tr
(
\pm
\v
{
\hat
P
}
\Pauli
)
\OPR\rho
_
\si
\OPR\rho
_
0 I
_
0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment