-
Mikhail Svechnikov authoredMikhail Svechnikov authored
AutocorrelationModels.cpp 3.02 KiB
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/Interface/AutocorrelationModels.cpp
//! @brief Implement AutocorrelationModel classes.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2024
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/Interface/AutocorrelationModels.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include <gsl/gsl_sf_bessel.h>
#include <numbers>
using std::numbers::pi;
//! @param sigma: rms of the roughness in nanometers
//! @param hurstParameter: hurst parameter which describes how jagged the interface,
//! dimensionless (0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness
//! @param lateralCorrLength: lateral correlation length of the roughness in nanometers
K_CorrelationModel::K_CorrelationModel(double sigma, double hurst, double lateralCorrLength)
: m_sigma(sigma)
, m_hurst_parameter(hurst)
, m_lateral_corr_length(lateralCorrLength)
{
validateOrThrow();
}
K_CorrelationModel* K_CorrelationModel::clone() const
{
return new K_CorrelationModel(m_sigma, m_hurst_parameter, m_lateral_corr_length);
}
std::string K_CorrelationModel::validate() const
{
std::vector<std::string> errs;
requestGe0(errs, m_sigma, "sigma");
if (m_sigma > 0) {
requestIn(errs, m_hurst_parameter, "hurst", 0, 1);
requestGe0(errs, m_lateral_corr_length, "lateralCorrLength"); // may be zero if unused
}
if (!errs.empty())
return jointError(errs);
m_validated = true;
return "";
}
std::string K_CorrelationModel::pythonArguments() const
{
return Py::Fmt::printArguments({{m_sigma, parDefs()[0].unit},
{m_hurst_parameter, parDefs()[1].unit},
{m_lateral_corr_length, parDefs()[2].unit}});
}
//! Power spectral density of the surface roughness is a result of two-dimensional
//! Fourier transform of the correlation function of the roughness profile.
//!
//! Based on Palasantzas, Phys Rev B, 48, 14472 (1993)
double K_CorrelationModel::spectralFunction(const R3& k) const
{
ASSERT(m_validated);
double H = m_hurst_parameter;
double clength2 = m_lateral_corr_length * m_lateral_corr_length;
double Qpar2 = k.magxy2();
return 4.0 * pi * H * m_sigma * m_sigma * clength2 * std::pow(1 + Qpar2 * clength2, -1 - H);
}
//! Correlation function of the roughness profile
double K_CorrelationModel::corrFunction(const R3& k) const
{
ASSERT(m_validated);
double H = m_hurst_parameter;
double clength = m_lateral_corr_length;
double R = k.magxy();
return m_sigma * m_sigma * std::pow(2., 1 - H) / tgamma(H) * std::pow(R / clength, H)
* gsl_sf_bessel_Knu(H, R / clength);
}