Skip to content
Snippets Groups Projects
Commit 2183d3cc authored by Nogga, Andreas's avatar Nogga, Andreas
Browse files

Merge branch 'main' of jugit.fz-juelich.de:ias4-codes/yn-interactions-nlo

parents 45e100a2 0c4e9a15
No related branches found
No related tags found
No related merge requests found
......@@ -88,15 +88,15 @@ channels $i,j$ depend on the charge parameter:
- `charge=1`: $i,j=1,2,3$ -- $\Lambda p$, $\Sigma^{+}n$, $\Sigma^{0} p$
- `charge=2`: $i,j=1$ -- $\Sigma^{+} p$
The matrix elements can be employed in a Lippmann-Schwinger (LS) equation of the form
$$ T_{\alpha' \alpha}^{ij}(p',p) = V_{\alpha' \alpha}^{ij}(p',p) + \sum_{\alpha'' k } \int_0^\infty dp'' \ V_{\alpha' \alpha''}^{ik}(p',p'') \frac{1}{E-\Delta m_k -\frac{{p''}^2}{2 \mu_k} + i \varepsilon } T_{\alpha'' \alpha}^{kj}(p'',p) .$$
The matrix elements can be employed in a Lippmann-Schwinger equation of the form
$$ T_{\alpha' \alpha}^{ij}(p',p) = V_{\alpha' \alpha}^{ij}(p',p) + \sum_{\alpha'' k } \int_0^\infty dp'' {p''}^2 \ V_{\alpha' \alpha''}^{ik}(p',p'') \frac{1}{E-\Delta m_k -\frac{{p''}^2}{2 \mu_k} + i \varepsilon } T_{\alpha'' \alpha}^{kj}(p'',p) .$$
See the original publications for definitions and more details. Note that the LS equation given above
does not include any $2\pi$ factors. These are included in the potential matrix elements. The subroutine
provided follows exactly this convention.
## Bug reports and issues
Please file an issue at [https://jugit.fz-juelich.de/ias4-codes/yn-interactions-nlo/-/issues] if
Please file an issue at https://jugit.fz-juelich.de/ias4-codes/yn-interactions-nlo/-/issues if
the code is not working properly.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment