#!/usr/bin/env python3 """ Custom form factor in DWBA. """ import cmath import bornagain as ba from bornagain import ba_plot as bp, deg, angstrom, nm import matplotlib.pyplot as plt def sinc(x): if abs(x) == 0: return 1. return cmath.sin(x) / x class CustomFormfactor: """ A custom defined form factor. The particle is a prism of height H, with a base in form of a Greek cross ("plus" sign) with side length L. """ def __init__(self, L, H): """ arguments and initialization for the formfactor """ # parameters describing the form factor self.L = L self.H = H def formfactor(self, q:'C3'): """ main scattering function """ qzhH = 0.5 * q.z() * self.H qxhL = 0.5 * q.x() * self.L qyhL = 0.5 * q.y() * self.L return (0.5 * self.H * self.L**2 * cmath.exp(complex(0., 1.) * qzhH) * sinc(qzhH) * (sinc(0.5 * qyhL) * (sinc(qxhL) - 0.5 * sinc(0.5 * qxhL)) + sinc(0.5 * qxhL) * sinc(qyhL))) def spanZ(self, rotation): """ upper and lower z-positions of a custom shape """ return ba.Span(0, self.H) def get_sample(): """ Sample with particles, having a custom formfactor, on a substrate. """ # materials vacuum = ba.RefractiveMaterial("Vacuum", 0, 0) material_substrate = ba.RefractiveMaterial("Substrate", 6e-6, 2e-8) material_particle = ba.RefractiveMaterial("Particle", 6e-4, 2e-8) # collection of particles ff = CustomFormfactor(20*nm, 15*nm) particle = ba.Particle(material_particle, ff) particle_layout = ba.ParticleLayout() particle_layout.addParticle(particle) vacuum_layer = ba.Layer(vacuum) vacuum_layer.addLayout(particle_layout) substrate_layer = ba.Layer(material_substrate) """ NOTE: Slicing of custom formfactor is not possible. all layers must have number of slices equal to 1. It is a default situation; otherwise use ``` my_layer.setNumberOfSlices(1) ``` Furthermore, a custom particle should not cross layer boundaries; that is, the z-span should be within a single layer """ # assemble sample sample = ba.Sample() sample.addLayer(vacuum_layer) sample.addLayer(substrate_layer) return sample def get_simulation(sample): beam = ba.Beam(1e9, 1*angstrom, 0.2*deg) n = <%= test_mode ? 11 : 100 %> det = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0, 2*deg) simulation = ba.ScatteringSimulation(beam, sample, det) # Deactivate multithreading: # Currently BornAgain cannot access the Python interpreter # from a multi-threaded C++ function simulation.options().setNumberOfThreads(1) return simulation if __name__ == '__main__': sample = get_sample() simulation = get_simulation(sample) result = simulation.simulate() <%- if test_mode or figure_mode -%> plotargs = bp.parse_commandline() bp.plot_simulation_result(result, **plotargs) bp.export(**plotargs) <%- else -%> bp.plot_simulation_result(result) plt.show() <%- end -%>