// ************************************************************************************************ // // BornAgain: simulate and fit reflection and scattering // //! @file Device/Mask/DetectorMask.cpp //! @brief Implements class DetectorMask. //! //! @homepage http://www.bornagainproject.org //! @license GNU General Public License v3 or higher (see COPYING) //! @copyright Forschungszentrum Jülich GmbH 2018 //! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS) // // ************************************************************************************************ #include "Device/Mask/DetectorMask.h" #include "Base/Axis/Bin.h" #include "Base/Axis/IAxis.h" #include "Device/Data/Powerfield.h" #include "Device/Mask/IShape2D.h" MaskPattern::MaskPattern(IShape2D* shape_, bool doMask_) : shape(shape_) , doMask(doMask_) { } MaskPattern::~MaskPattern() { delete shape; } MaskPattern* MaskPattern::clone() const { return new MaskPattern(shape->clone(), doMask); } DetectorMask::DetectorMask(const IAxis& xAxis, const IAxis& yAxis) : m_xAxis(xAxis.clone()) , m_yAxis(yAxis.clone()) , m_masked(xAxis.size() * yAxis.size(), false) { } DetectorMask::~DetectorMask() = default; DetectorMask::DetectorMask(const DetectorMask& other) : m_xAxis(other.m_xAxis->clone()) , m_yAxis(other.m_yAxis->clone()) , m_stack(other.m_stack) , m_masked(other.m_masked) , m_number_of_masked_channels(other.m_number_of_masked_channels) { } DetectorMask& DetectorMask::operator=(const DetectorMask& other) { if (this != &other) { m_stack = other.m_stack; m_masked = other.m_masked; m_number_of_masked_channels = other.m_number_of_masked_channels; } return *this; } void DetectorMask::addMask(const IShape2D& shape, bool mask_value) { m_stack.emplace_back(new MaskPattern(shape.clone(), mask_value)); process_masks(); } bool DetectorMask::isMasked(size_t i_flat) const { return m_number_of_masked_channels == 0 ? false : m_masked[i_flat]; } bool DetectorMask::hasMasks() const { return !m_stack.empty(); } size_t DetectorMask::numberOfMasks() const { return m_stack.size(); } const MaskPattern* DetectorMask::patternAt(size_t iMask) const { return m_stack.at(iMask); } void DetectorMask::process_masks() { m_number_of_masked_channels = 0; m_masked.clear(); m_masked.resize(m_xAxis->size() * m_yAxis->size(), false); if (m_stack.empty()) return; m_number_of_masked_channels = 0; for (size_t i_flat = 0; i_flat < m_masked.size(); ++i_flat) { Bin1D binx = m_xAxis->bin((i_flat / m_yAxis->size()) % m_xAxis->size()); Bin1D biny = m_yAxis->bin(i_flat % m_yAxis->size()); // setting mask to the data starting from last shape added bool is_masked(false); for (int k = m_stack.size() - 1; k >= 0; --k) { const MaskPattern* const pat = m_stack[k]; if (pat->shape->contains(binx, biny)) { if (pat->doMask) is_masked = true; m_masked[i_flat] = pat->doMask; break; // i_flat is covered by the shape, stop looking further } } if (is_masked) ++m_number_of_masked_channels; } }