// ************************************************************************************************ // // BornAgain: simulate and fit reflection and scattering // //! @file Device/Mask/DetectorMask.cpp //! @brief Implements class DetectorMask. //! //! @homepage http://www.bornagainproject.org //! @license GNU General Public License v3 or higher (see COPYING) //! @copyright Forschungszentrum Jülich GmbH 2018 //! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS) // // ************************************************************************************************ #include "Device/Mask/DetectorMask.h" #include "Base/Axis/IAxis.h" #include "Device/Histo/Histogram2D.h" DetectorMask::DetectorMask() : m_number_of_masked_channels(0) { } DetectorMask::DetectorMask(const DetectorMask& other) : m_shapes(other.m_shapes) , m_mask_of_shape(other.m_mask_of_shape) , m_number_of_masked_channels(other.m_number_of_masked_channels) { m_mask_data.copyFrom(other.m_mask_data); } DetectorMask& DetectorMask::operator=(const DetectorMask& other) { if (this != &other) { m_shapes = other.m_shapes; m_mask_of_shape = other.m_mask_of_shape; m_mask_data.copyFrom(other.m_mask_data); m_number_of_masked_channels = other.m_number_of_masked_channels; // DetectorMask tmp(other); // tmp.swapContent(*this); } return *this; } void DetectorMask::addMask(const IShape2D& shape, bool mask_value) { m_shapes.push_back(shape.clone()); m_mask_of_shape.push_back(mask_value); m_mask_data.clear(); m_number_of_masked_channels = 0; } void DetectorMask::initMaskData(const IAxis& xAxis, const IAxis& yAxis) { ASSERT(m_shapes.size() == m_mask_of_shape.size()); m_mask_data.clear(); m_mask_data.addAxis(xAxis); m_mask_data.addAxis(yAxis); process_masks(); } bool DetectorMask::isMasked(size_t index) const { return m_number_of_masked_channels == 0 ? false : m_mask_data[index]; } Histogram2D* DetectorMask::createHistogram() const { OutputData<double> data; data.copyShapeFrom(m_mask_data); for (size_t i = 0; i < m_mask_data.getAllocatedSize(); ++i) data[i] = static_cast<double>(m_mask_data[i]); return dynamic_cast<Histogram2D*>(IHistogram::createHistogram(data)); } size_t DetectorMask::numberOfMasks() const { return m_shapes.size(); } const IShape2D* DetectorMask::getMaskShape(size_t mask_index, bool& mask_value) const { if (mask_index >= numberOfMasks()) return nullptr; mask_value = m_mask_of_shape[mask_index]; return m_shapes[mask_index].get(); } void DetectorMask::process_masks() { m_mask_data.setAllTo(false); if (!!m_shapes.empty()) return; m_number_of_masked_channels = 0; for (size_t index = 0; index < m_mask_data.getAllocatedSize(); ++index) { Bin1D binx = m_mask_data.getAxisBin(index, 0); Bin1D biny = m_mask_data.getAxisBin(index, 1); // setting mask to the data starting from last shape added bool is_masked(false); for (size_t i_shape = m_shapes.size(); i_shape > 0; --i_shape) { const IShape2D* shape = m_shapes[i_shape - 1].get(); if (shape->contains(binx, biny)) { if (m_mask_of_shape[i_shape - 1]) is_masked = true; m_mask_data[index] = m_mask_of_shape[i_shape - 1]; break; // index is covered by the shape, stop looking further } } if (is_masked) ++m_number_of_masked_channels; } }