// ************************************************************************************************ // // BornAgain: simulate and fit reflection and scattering // //! @file Base/Axis/Frame.cpp //! @brief Implements class Frame. //! //! @homepage http://www.bornagainproject.org //! @license GNU General Public License v3 or higher (see COPYING) //! @copyright Forschungszentrum Jülich GmbH 2018 //! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS) // // ************************************************************************************************ #include "Base/Axis/Frame.h" #include "Base/Axis/Bin.h" #include "Base/Axis/IAxis.h" #include "Base/Util/Assert.h" Frame::Frame(const std::vector<IAxis*>& axes) : m_axes(axes) { m_size = 1; for (size_t k = 0; k < rank(); ++k) m_size *= axis(k).size(); } const IAxis& Frame::axis(size_t k_axis) const { return *m_axes.at(k_axis); } double Frame::projectedCoord(size_t i_flat, size_t k_axis) const { auto axis_index = projectedIndex(i_flat, k_axis); return (*m_axes[k_axis])[axis_index]; } std::vector<int> Frame::allIndices(size_t i_flat) const { std::vector<int> result(rank()); for (size_t k = 0; k < rank(); ++k) result[k] = projectedIndex(i_flat, k); return result; } size_t Frame::projectedIndex(size_t i_flat, size_t k_axis) const { if (rank()==1) { return i_flat; } else if (rank()==2) { if (k_axis==0) return (i_flat / m_axes[1]->size()) % m_axes[0]->size(); if (k_axis==1) return i_flat % m_axes[1]->size(); ASSERT(0); } ASSERT(0); /* // generic code for rank>2 currently unused size_t remainder(i_flat); for (int k = rank() - 1; k >= 0; --k) { size_t result = remainder % m_axes[k]->size(); if (k_axis == k) return result; remainder /= m_axes[k]->size(); } */ } size_t Frame::toGlobalIndex(const std::vector<unsigned>& axes_indices) const { ASSERT(axes_indices.size() == rank()); size_t result = 0; size_t step_size = 1; for (int k = rank() - 1; k >= 0; --k) { ASSERT(axes_indices[k] < m_axes[k]->size()); result += axes_indices[k] * step_size; step_size *= m_axes[k]->size(); } return result; } size_t Frame::findGlobalIndex(const std::vector<double>& coordinates) const { ASSERT(coordinates.size() == rank()); std::vector<unsigned> axes_indexes; axes_indexes.resize(rank()); for (size_t k = 0; k < rank(); ++k) axes_indexes[k] = static_cast<unsigned>(m_axes[k]->findClosestIndex(coordinates[k])); return toGlobalIndex(axes_indexes); }