From d74f27e246d25b5ddc806c560d484cdba3d88082 Mon Sep 17 00:00:00 2001 From: "Joachim Wuttke (o)" <j.wuttke@fz-juelich.de> Date: Fri, 22 Sep 2023 10:08:48 +0200 Subject: [PATCH] convert fit_gisas --- auto/Examples/fit/scatter2d/fit_gisas.py | 12 ++++-------- auto/MiniExamples/fit/scatter2d/fit_gisas.py | 12 ++++-------- rawEx/fit/scatter2d/fit_gisas.py | 12 ++++-------- 3 files changed, 12 insertions(+), 24 deletions(-) diff --git a/auto/Examples/fit/scatter2d/fit_gisas.py b/auto/Examples/fit/scatter2d/fit_gisas.py index 4bde6077dbf..253788863da 100755 --- a/auto/Examples/fit/scatter2d/fit_gisas.py +++ b/auto/Examples/fit/scatter2d/fit_gisas.py @@ -13,13 +13,13 @@ from bornagain import ba_fitmonitor from matplotlib import pyplot as plt -def run_fitting(): +if __name__ == '__main__': datadir = os.getenv('BA_DATA_DIR', '') - data = np.loadtxt(os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz"), - dtype=float) + fname = os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz") + data = ba.readData2D(fname, ba.csv2D) fit_objective = ba.FitObjective() - fit_objective.addSimulationAndData(model.get_simulation, data) + fit_objective.addFitPair(model.get_simulation, data) fit_objective.initPrint(10) # Print on every 10th iteration. observer = ba_fitmonitor.PlotterGISAS() @@ -39,8 +39,4 @@ def run_fitting(): # Save simulation image corresponding to the best fit parameters np.savetxt("fit.txt", fit_objective.simulationResult().npArray()) - - -if __name__ == '__main__': - run_fitting() plt.show() diff --git a/auto/MiniExamples/fit/scatter2d/fit_gisas.py b/auto/MiniExamples/fit/scatter2d/fit_gisas.py index 89e6dd4f10d..d890ab2ed42 100755 --- a/auto/MiniExamples/fit/scatter2d/fit_gisas.py +++ b/auto/MiniExamples/fit/scatter2d/fit_gisas.py @@ -13,13 +13,13 @@ from bornagain import ba_fitmonitor from matplotlib import pyplot as plt -def run_fitting(): +if __name__ == '__main__': datadir = os.getenv('BA_DATA_DIR', '') - data = np.loadtxt(os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz"), - dtype=float) + fname = os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz") + data = ba.readData2D(fname, ba.csv2D) fit_objective = ba.FitObjective() - fit_objective.addSimulationAndData(model.get_simulation, data) + fit_objective.addFitPair(model.get_simulation, data) fit_objective.initPrint(10) # Print on every 10th iteration. observer = ba_fitmonitor.PlotterGISAS() @@ -39,8 +39,4 @@ def run_fitting(): # Save simulation image corresponding to the best fit parameters np.savetxt("fit.txt", fit_objective.simulationResult().npArray()) - - -if __name__ == '__main__': - run_fitting() plt.show() diff --git a/rawEx/fit/scatter2d/fit_gisas.py b/rawEx/fit/scatter2d/fit_gisas.py index 00f88586971..bdba0108255 100755 --- a/rawEx/fit/scatter2d/fit_gisas.py +++ b/rawEx/fit/scatter2d/fit_gisas.py @@ -13,13 +13,13 @@ from bornagain import ba_fitmonitor from matplotlib import pyplot as plt -def run_fitting(): +if __name__ == '__main__': datadir = os.getenv('BA_DATA_DIR', '') - data = np.loadtxt(os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz"), - dtype=float) + fname = os.path.join(datadir, "scatter2d/faked_gisas1.dat.gz") + data = ba.readData2D(fname, ba.csv2D) fit_objective = ba.FitObjective() - fit_objective.addSimulationAndData(model.get_simulation, data) + fit_objective.addFitPair(model.get_simulation, data) fit_objective.initPrint(10) # Print on every 10th iteration. observer = ba_fitmonitor.PlotterGISAS() @@ -39,8 +39,4 @@ def run_fitting(): # Save simulation image corresponding to the best fit parameters np.savetxt("fit.txt", fit_objective.simulationResult().npArray()) - - -if __name__ == '__main__': - run_fitting() plt.show() -- GitLab