diff --git a/Doc/DevRef/DevRef.pdf b/Doc/DevRef/DevRef.pdf index 9e9d911b180c3db1f4eb78357d25ae402b6ce15b..fc66d330f16feb85225709aef1277c0aa005350e 100644 Binary files a/Doc/DevRef/DevRef.pdf and b/Doc/DevRef/DevRef.pdf differ diff --git a/Doc/DevRef/Multilayers.tex b/Doc/DevRef/Multilayers.tex index d9347c67ec813d69f0ce85399725b3881c9fa8c4..27af97d8a50b81c5774b3db1f95df05dc9009eba 100644 --- a/Doc/DevRef/Multilayers.tex +++ b/Doc/DevRef/Multilayers.tex @@ -540,7 +540,7 @@ the continuity conditions~\cref{Econtcond} take the form +A^-_l &+A^+_l &=& +A^-_{l-1}\delta_{l-1} &+A^+_{l-1}\delta_{l-1}^{-1}, - \\ + \\[1.3ex] -A^-_l \kappa_l &+A^+_l \kappa_l &=& -A^-_{l-1}\delta_{l-1} \kappa_{l-1} &+A^+_{l-1}\delta_{l-1}^{-1} \kappa_{l-1}. @@ -561,9 +561,9 @@ Parratt \cite{Par54}, unaware of Abelès, expressed the same relation as a recur \index{Parratt recursion}% } \begin{equation}\label{EMil} - M_l \coloneqq \Delta_{l-1} S_l + M_l \coloneqq \Delta_{l-1} S_l, \end{equation} -where +which we write using the phase rotation matrix \begin{equation}\label{DmatD} \Delta_l \coloneqq @@ -572,14 +572,14 @@ where 0 & \delta_{l} \end{array}\right) \end{equation} -and +and the refraction matrix \begin{equation}\label{DmatS} S_l \coloneqq \frac{1}{2} \left(\begin{array}{cc} s^+_l&s^-_l\\ - s^-_l&s^+_l) + s^-_l&s^+_l \end{array}\right) \end{equation} with coefficients diff --git a/Doc/DevRef/Roughness.tex b/Doc/DevRef/Roughness.tex index 3e211a147f77bb922f54913dc61044e9efbb69a7..9190031845c691990f763d9ea1179b026219c55c 100644 --- a/Doc/DevRef/Roughness.tex +++ b/Doc/DevRef/Roughness.tex @@ -49,7 +49,7 @@ Graded interfaces have a smooth SLD profile, i.e.\ the function $\overline{v}(z)$ or $\kappa^2(z)$ evolves continuously from one bulk value to the other. Among the SLD profiles that can be solved analytically, -the tanh profile is particularly important. +the tanh (\cref{Ftanhc}a) profile is particularly important. A good summary of the solution can be found in Ch.~2.5 of Lekner \cite{Lek16}.\footnote {He credits Eckart (1930) and Epstein (1930) for the solution. For a short summary, see also \cite[\S~25, exercise~3]{LL3}.} @@ -83,10 +83,6 @@ The transmission coefficient $t_{ab}$ is communicated in \cite{AnMR88}. Using various properties of the Gamma and sinh functions, one can verify flux conservation~\cref{EConservation}. -%==================================================================================================% -\subsection{Fresnel coefficients with roughness factor} -%==================================================================================================% - In the limit $\tau\to0$, the phase factor $\varphi$ in \cref{ErTanh} goes to zero. For simplicity, we let $\varphi=0$ throughout. This approximation is equivalent to an adjustment of the interface position~$z_{ab}$ @@ -97,7 +93,7 @@ by an amount that can be expected to be small compared to the interface thicknes \includegraphics[width=0.41\textwidth]{fig/funcplot/tanhc.ps} \hfill \includegraphics[width=0.41\textwidth]{fig/funcplot/FresnelReductionTanh.ps} -\caption{(a) Function tanhc. (b) Reflectivity reduction factor, +\caption{(a) Functions tanh and tanhc. (b) Reflectivity reduction factor, obtained by dividing \cref{ErTanh2} through the Fresnel reflectivity~\cref{EtFresnel}, as function of $\kappa_a \tau$ for ratios $\kappa_b / \kappa_a$ of 0.1, 0.2, 0.4, 0.9, 1.1, 2, and~5.} @@ -140,15 +136,9 @@ Tests confirm that flux conservation is fulfilled at machine precision.\footnote Eq.~\cref{ESab2}, which relates the refraction matrix to transmission and reflection coefficients, remains valid for our modified coefficients \cref{ErTanh2} and~\cref{EtTanh2}. -Accordingly, \cref{ESab} must be replaced by -\begin{equation}\label{ESabR} - S_{ab} - \coloneqq - \frac{1}{2\kappa_a} - \left(\begin{array}{ll} - (R_{ab}^{-1}\kappa_a+R_{ab}\kappa_b)&(R_{ab}^{-1}\kappa_a-R_{ab}\kappa_b)\\ - (R_{ab}^{-1}\kappa_a-R_{ab}\kappa_b)&(R_{ab}^{-1}\kappa_a+R_{ab}\kappa_b) - \end{array}\right). +Accordingly, the coefficients~\cref{Dslpm} must be replaced by +\begin{equation}\label{EslpmTanh} + s^\pm_l = R_{l,l-1}^{-1} \pm R_{l,l-1}\kappa_{l-1}/\kappa_l. \end{equation} %==================================================================================================% @@ -175,28 +165,23 @@ This interpretation is mentioned by N\'evot et al. \cite{NePC88}. More questionable is the simultaneous modification of the transmission coefficient. Currently BornAgain uses \begin{align}\label{EtNC} -\tilde t_{ab} &= t_{ab}\, \e^{+\left( k_a - k_b \right)^2 \sigma_{ab}^2/2}, +\tilde t_{ab} &= t_{ab}\, \e^{+\left( k_a - k_b \right)^2 \sigma^2/2}, \end{align} where $t_{ab}$ is the Fresnel coefficient \cref{EtFresnel}. This is the result obtained by Tolan \cite[Eq.~2.35]{Tol99}, and is also given by de Boer \cite{BoLe96} as a result from formal perturbation theory in the limit of very small lateral correlation length. -With \cref{ESab2}, we obtain the refraction matrix -\begin{align}\label{ESabGibaud} -\tilde S_{ab} &= \frac{1}{2\kappa_a} \begin{pmatrix} - \left( \kappa_a + \kappa_b \right) \NCm & - \left( \kappa_a - \kappa_b \right) \NCp\\[.2cm] - \left( \kappa_a - \kappa_b \right) \NCp & - \left( \kappa_a + \kappa_b \right) \NCm -\end{pmatrix}, -\end{align} +With \cref{ESab2}, we obtain the coefficients to replace~\cref{Dslpm}, +\begin{equation}\label{EslpmNC} + s^\pm_l = (1 \pm \kappa_{l-1}/\kappa_l) \exp(-(\kappa_{l-1}\mp\kappa_l)^2\sigma^2/2), +\end{equation} which shows that the above is also consistent with \cite[Eq.~3.114]{GiVi09}. However, the total reflected and transmitted flux $\kappa_a|\tilde r_{ab}|^2+\kappa_b|\tilde t_{ab}|^2$, computed as in \cref{EConservation}, is \emph{greater} than the incoming flux~$\kappa_a$. -This takes all credibility from \cref{EtNC} and \cref{ESabGibaud}. +This takes all credibility from \cref{EtNC} and \cref{EslpmNC}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Scattering by a rough interface}\label{Sroughscatter} diff --git a/Doc/DevRef/fig/funcplot/tanhc.ps b/Doc/DevRef/fig/funcplot/tanhc.ps index 70c14e68ffc08d95183feaa1137f0bb7e854e5d8..8effb78624df0a9bc9c013317cac8509fca9dd98 100644 --- a/Doc/DevRef/fig/funcplot/tanhc.ps +++ b/Doc/DevRef/fig/funcplot/tanhc.ps @@ -1,5 +1,5 @@ %!PS-Adobe-1.0 EPSF-1.0 -%%BoundingBox: 14 604 258 788 +%%BoundingBox: 7 604 259 788 %%Comment: Bounding box extracted by bboxx %%+: A program by Dov Grobgeld 2003 %%Comment: Bounding box extracted by bboxx @@ -1630,11 +1630,10 @@ WuGdict18a begin { 13 1 0 1. 1. pset 6 ipCol } ] def -{ 3 aCol1 iColA } /icCol x bind def % number of colours and colour style +{ 7 aCol3 iColA } /icCol x bind def % number of colours and colour style /cStyles [ - { 1. [] lset 0 icCol } - { 1. [] lset 1 icCol } - { 1. [] lset 2 icCol } + { 2. [] lset 0 icCol } + { 2. [] lset 1 icCol } ] def Resets @@ -1646,8 +1645,8 @@ BoxBackground %% output created by Frida version post-2.4.4a -1 0.03 30 xSetCoord -1 0.02 2 ySetCoord +1 0.02 50 xSetCoord +1 0.008 2 ySetCoord % x axis: [ @@ -1655,258 +1654,449 @@ BoxBackground 1 wx {(1)} 10 wx {(10)} ] SetTacVec -0.01 wx 100 wx 5 9 SetTicVecLog +0.01 wx 100 wx 5 3 SetTicVecLog 0 10 0 0 0 90 OneAxx Axx Tic Tac xNumL %% low x axis 0 10 0 10 0 270 OneAxx Axx Tic Tac %% top x axis {(x)} xCL % y axis: [ + 0.01 wy {(0.01)} 0.1 wy {(0.1)} 1 wy {(1)} ] SetTacVec -0.01 wy 10 wy 4 9 SetTicVecLog +0.001 wy 10 wy 5 9 SetTicVecLog 0 10 0 0 90 0 OneAxx Axx Tic Tac yNumL %% left y axis 0 10 10 0 90 180 OneAxx Axx Tic Tac %% right y axis -{(tanhc x)} yCL +{(f(x))} yCL +24 setown +3 5 50 {(tanh x)} rtextCM +7 5 -50 {(tanhc x)} rtextCM - 1 [ 0.100000 ] zValues + 1 [ ] zValues 1 cstyle % (x () -> y ()) - 0.00000 8.49420 0.00000 ti % 0.03 wx 0.9997001 wy - 0.26756 8.49391 0.00000 t % 0.03609016 wx 0.9995661 wy - 0.53512 8.49349 0.00000 t % 0.04341666 wx 0.9993721 wy - 0.80268 8.49288 0.00000 t % 0.05223047 wx 0.9990917 wy - 0.93645 8.49248 0.00000 t % 0.05728721 wx 0.9989075 wy - 1.07023 8.49199 0.00000 t % 0.06283353 wx 0.9986861 wy - 1.20401 8.49142 0.00000 t % 0.06891683 wx 0.9984198 wy - 1.33779 8.49072 0.00000 t % 0.07558908 wx 0.9980998 wy - 1.47157 8.48988 0.00000 t % 0.08290731 wx 0.9977151 wy - 1.60535 8.48888 0.00000 t % 0.09093407 wx 0.9972528 wy - 1.73913 8.48767 0.00000 t % 0.09973794 wx 0.9966973 wy - 1.80602 8.48697 0.00000 t % 0.1044545 wx 0.9963789 wy - 1.87291 8.48621 0.00000 t % 0.1093942 wx 0.99603 wy - 1.93980 8.48538 0.00000 t % 0.1145674 wx 0.9956476 wy - 2.00669 8.48446 0.00000 t % 0.1199853 wx 0.9952287 wy - 2.07358 8.48346 0.00000 t % 0.1256594 wx 0.9947696 wy - 2.14047 8.48236 0.00000 t % 0.1316018 wx 0.9942667 wy - 2.20736 8.48116 0.00000 t % 0.1378252 wx 0.9937158 wy - 2.27425 8.47984 0.00000 t % 0.1443429 wx 0.9931124 wy - 2.34114 8.47840 0.00000 t % 0.1511689 wx 0.9924516 wy - 2.40803 8.47681 0.00000 t % 0.1583176 wx 0.9917281 wy - 2.47492 8.47508 0.00000 t % 0.1658044 wx 0.990936 wy - 2.54181 8.47318 0.00000 t % 0.1736453 wx 0.9900689 wy - 2.60870 8.47109 0.00000 t % 0.181857 wx 0.9891199 wy - 2.67559 8.46881 0.00000 t % 0.190457 wx 0.9880816 wy - 2.74247 8.46632 0.00000 t % 0.1994636 wx 0.9869458 wy - 2.80936 8.46358 0.00000 t % 0.2088962 wx 0.9857036 wy - 2.84281 8.46212 0.00000 t % 0.2137785 wx 0.9850397 wy - 2.87625 8.46059 0.00000 t % 0.2187749 wx 0.9843455 wy - 2.90970 8.45899 0.00000 t % 0.2238881 wx 0.9836197 wy - 2.94314 8.45731 0.00000 t % 0.2291207 wx 0.982861 wy - 2.97659 8.45556 0.00000 t % 0.2344757 wx 0.982068 wy - 3.01003 8.45372 0.00000 t % 0.2399558 wx 0.981239 wy - 3.04348 8.45181 0.00000 t % 0.245564 wx 0.9803727 wy - 3.07692 8.44980 0.00000 t % 0.2513033 wx 0.9794674 wy - 3.11037 8.44770 0.00000 t % 0.2571767 wx 0.9785214 wy - 3.14381 8.44551 0.00000 t % 0.2631874 wx 0.9775331 wy - 3.17726 8.44321 0.00000 t % 0.2693385 wx 0.9765006 wy - 3.21070 8.44081 0.00000 t % 0.2756335 wx 0.975422 wy - 3.24415 8.43830 0.00000 t % 0.2820755 wx 0.9742956 wy - 3.27759 8.43568 0.00000 t % 0.2886681 wx 0.9731192 wy - 3.31104 8.43294 0.00000 t % 0.2954148 wx 0.9718909 wy - 3.34448 8.43007 0.00000 t % 0.3023192 wx 0.9706084 wy - 3.37793 8.42707 0.00000 t % 0.3093849 wx 0.9692697 wy - 3.41137 8.42394 0.00000 t % 0.3166158 wx 0.9678725 wy - 3.44482 8.42067 0.00000 t % 0.3240157 wx 0.9664143 wy - 3.47826 8.41725 0.00000 t % 0.3315885 wx 0.9648929 wy - 3.51171 8.41367 0.00000 t % 0.3393384 wx 0.9633057 wy - 3.54515 8.40994 0.00000 t % 0.3472693 wx 0.9616502 wy - 3.57860 8.40603 0.00000 t % 0.3553856 wx 0.9599238 wy - 3.61204 8.40196 0.00000 t % 0.3636916 wx 0.9581237 wy - 3.64548 8.39770 0.00000 t % 0.3721917 wx 0.9562472 wy - 3.67893 8.39326 0.00000 t % 0.3808905 wx 0.9542915 wy - 3.71237 8.38861 0.00000 t % 0.3897926 wx 0.9522536 wy - 3.72919 8.38620 0.00000 t % 0.3943477 wx 0.9511968 wy - 3.76226 8.38131 0.00000 t % 0.4034579 wx 0.9490551 wy - 3.79608 8.37608 0.00000 t % 0.4129964 wx 0.9467732 wy - 3.82915 8.37075 0.00000 t % 0.4225373 wx 0.9444511 wy - 3.86297 8.36505 0.00000 t % 0.4325269 wx 0.9419782 wy - 3.89604 8.35925 0.00000 t % 0.442519 wx 0.9394631 wy - 3.91304 8.35617 0.00000 t % 0.4477487 wx 0.9381304 wy - 3.92986 8.35305 0.00000 t % 0.452981 wx 0.9367861 wy - 3.94649 8.34991 0.00000 t % 0.4582134 wx 0.9354309 wy - 3.96293 8.34674 0.00000 t % 0.4634457 wx 0.934065 wy - 3.97993 8.34338 0.00000 t % 0.4689226 wx 0.9326238 wy - 3.99675 8.34000 0.00000 t % 0.4744024 wx 0.9311705 wy - 4.01338 8.33658 0.00000 t % 0.4798822 wx 0.9297058 wy - 4.02981 8.33313 0.00000 t % 0.485362 wx 0.92823 wy - 4.04682 8.32948 0.00000 t % 0.4910979 wx 0.9266735 wy - 4.06364 8.32580 0.00000 t % 0.4968368 wx 0.9251042 wy - 4.08027 8.32209 0.00000 t % 0.5025757 wx 0.9235233 wy - 4.09670 8.31834 0.00000 t % 0.5083147 wx 0.921931 wy - 4.11371 8.31438 0.00000 t % 0.5143218 wx 0.920252 wy - 4.13053 8.31039 0.00000 t % 0.5203322 wx 0.91856 wy - 4.14716 8.30636 0.00000 t % 0.5263425 wx 0.9168561 wy - 4.16359 8.30229 0.00000 t % 0.5323528 wx 0.9151404 wy - 4.18060 8.29799 0.00000 t % 0.538644 wx 0.9133321 wy - 4.19742 8.29366 0.00000 t % 0.5449386 wx 0.9115104 wy - 4.21405 8.28929 0.00000 t % 0.5512331 wx 0.9096765 wy - 4.23048 8.28487 0.00000 t % 0.5575277 wx 0.9078308 wy - 4.24749 8.28022 0.00000 t % 0.5641164 wx 0.9058862 wy - 4.26431 8.27552 0.00000 t % 0.5707086 wx 0.903928 wy - 4.28094 8.27078 0.00000 t % 0.5773008 wx 0.9019576 wy - 4.29737 8.26600 0.00000 t % 0.5838931 wx 0.8999751 wy - 4.31438 8.26096 0.00000 t % 0.5907934 wx 0.8978875 wy - 4.33120 8.25587 0.00000 t % 0.5976974 wx 0.8957862 wy - 4.34783 8.25074 0.00000 t % 0.6046013 wx 0.8936727 wy - 4.36426 8.24557 0.00000 t % 0.6115053 wx 0.8915472 wy - 4.38127 8.24012 0.00000 t % 0.6187319 wx 0.88931 wy - 4.39809 8.23461 0.00000 t % 0.6259624 wx 0.8870593 wy - 4.41472 8.22907 0.00000 t % 0.6331928 wx 0.8847965 wy - 4.43115 8.22348 0.00000 t % 0.6404232 wx 0.8825221 wy - 4.44816 8.21758 0.00000 t % 0.6479917 wx 0.8801292 wy - 4.46498 8.21164 0.00000 t % 0.655564 wx 0.8777231 wy - 4.48161 8.20565 0.00000 t % 0.6631364 wx 0.8753054 wy - 4.49804 8.19961 0.00000 t % 0.6707088 wx 0.8728765 wy - 4.51505 8.19325 0.00000 t % 0.6786351 wx 0.8703224 wy - 4.53187 8.18684 0.00000 t % 0.6865655 wx 0.8677556 wy - 4.54849 8.18038 0.00000 t % 0.694496 wx 0.8651778 wy - 4.56493 8.17387 0.00000 t % 0.7024265 wx 0.8625895 wy - 4.58194 8.16701 0.00000 t % 0.7107276 wx 0.8598694 wy - 4.59876 8.16010 0.00000 t % 0.7190331 wx 0.8571372 wy - 4.61538 8.15314 0.00000 t % 0.7273386 wx 0.854395 wy - 4.63182 8.14614 0.00000 t % 0.7356441 wx 0.8516431 wy - 4.64883 8.13876 0.00000 t % 0.7443378 wx 0.8487528 wy - 4.66565 8.13132 0.00000 t % 0.7530361 wx 0.8458516 wy - 4.68227 8.12384 0.00000 t % 0.7617343 wx 0.8429414 wy - 4.69871 8.11631 0.00000 t % 0.7704326 wx 0.8400228 wy - 4.71572 8.10837 0.00000 t % 0.7795374 wx 0.8369593 wy - 4.73254 8.10038 0.00000 t % 0.788647 wx 0.8338862 wy - 4.74916 8.09235 0.00000 t % 0.7977566 wx 0.8308057 wy - 4.76560 8.08426 0.00000 t % 0.8068662 wx 0.8277182 wy - 4.78261 8.07575 0.00000 t % 0.8164016 wx 0.8244797 wy - 4.79943 8.06718 0.00000 t % 0.825942 wx 0.8212332 wy - 4.81605 8.05857 0.00000 t % 0.8354824 wx 0.8179811 wy - 4.83249 8.04990 0.00000 t % 0.8450228 wx 0.814724 wy - 4.84950 8.04078 0.00000 t % 0.8550091 wx 0.8113098 wy - 4.86632 8.03161 0.00000 t % 0.8650007 wx 0.8078898 wy - 4.88294 8.02239 0.00000 t % 0.8749922 wx 0.8044662 wy - 4.89938 8.01312 0.00000 t % 0.8849838 wx 0.8010398 wy - 4.91639 8.00337 0.00000 t % 0.8954424 wx 0.797451 wy - 4.93321 7.99357 0.00000 t % 0.9059064 wx 0.7938587 wy - 4.94983 7.98371 0.00000 t % 0.9163705 wx 0.7902654 wy - 4.96627 7.97382 0.00000 t % 0.9268345 wx 0.7866719 wy - 4.98328 7.96341 0.00000 t % 0.9377877 wx 0.7829108 wy - 5.00010 7.95295 0.00000 t % 0.9487466 wx 0.7791491 wy - 5.01672 7.94245 0.00000 t % 0.9597055 wx 0.7753894 wy - 5.03316 7.93190 0.00000 t % 0.9706644 wx 0.7716324 wy - 5.05017 7.92082 0.00000 t % 0.9821355 wx 0.7677035 wy - 5.06699 7.90968 0.00000 t % 0.9936127 wx 0.7637771 wy - 5.08361 7.89851 0.00000 t % 1.00509 wx 0.759856 wy - 5.10005 7.88729 0.00000 t % 1.016567 wx 0.7559409 wy - 5.11706 7.87551 0.00000 t % 1.028581 wx 0.7518501 wy - 5.13388 7.86368 0.00000 t % 1.0406 wx 0.7477655 wy - 5.15050 7.85181 0.00000 t % 1.05262 wx 0.7436898 wy - 5.16694 7.83990 0.00000 t % 1.06464 wx 0.7396239 wy - 5.18395 7.82741 0.00000 t % 1.077222 wx 0.7353792 wy - 5.20077 7.81487 0.00000 t % 1.08981 wx 0.7311446 wy - 5.21739 7.80229 0.00000 t % 1.102399 wx 0.7269231 wy - 5.23383 7.78969 0.00000 t % 1.114987 wx 0.7227153 wy - 5.25084 7.77646 0.00000 t % 1.128164 wx 0.7183265 wy - 5.26766 7.76320 0.00000 t % 1.141347 wx 0.7139521 wy - 5.28428 7.74990 0.00000 t % 1.154531 wx 0.7095952 wy - 5.30072 7.73659 0.00000 t % 1.167714 wx 0.7052564 wy - 5.31773 7.72262 0.00000 t % 1.181514 wx 0.7007351 wy - 5.33454 7.70862 0.00000 t % 1.195321 wx 0.6962328 wy - 5.35117 7.69460 0.00000 t % 1.209128 wx 0.6917527 wy - 5.36761 7.68057 0.00000 t % 1.222935 wx 0.6872954 wy - 5.38462 7.66586 0.00000 t % 1.237388 wx 0.6826549 wy - 5.40143 7.65112 0.00000 t % 1.251848 wx 0.6780384 wy - 5.41806 7.63637 0.00000 t % 1.266308 wx 0.673449 wy - 5.43450 7.62161 0.00000 t % 1.280768 wx 0.6688873 wy - 5.45151 7.60616 0.00000 t % 1.295904 wx 0.6641426 wy - 5.46832 7.59068 0.00000 t % 1.311048 wx 0.659427 wy - 5.48495 7.57521 0.00000 t % 1.326191 wx 0.6547437 wy - 5.50139 7.55973 0.00000 t % 1.341335 wx 0.650093 wy - 5.51839 7.54353 0.00000 t % 1.357187 wx 0.6452604 wy - 5.53521 7.52732 0.00000 t % 1.373047 wx 0.6404623 wy - 5.55184 7.51112 0.00000 t % 1.388907 wx 0.6357015 wy - 5.56828 7.49492 0.00000 t % 1.404767 wx 0.6309785 wy - 5.58528 7.47798 0.00000 t % 1.421368 wx 0.6260757 wy - 5.60210 7.46105 0.00000 t % 1.437978 wx 0.6212125 wy - 5.61873 7.44413 0.00000 t % 1.454588 wx 0.616392 wy - 5.63517 7.42724 0.00000 t % 1.471198 wx 0.6116143 wy - 5.65217 7.40958 0.00000 t % 1.488584 wx 0.6066596 wy - 5.66899 7.39193 0.00000 t % 1.50598 wx 0.6017498 wy - 5.68562 7.37431 0.00000 t % 1.523375 wx 0.5968878 wy - 5.70206 7.35673 0.00000 t % 1.540771 wx 0.5920737 wy - 5.71906 7.33836 0.00000 t % 1.558979 wx 0.587086 wy - 5.73588 7.32002 0.00000 t % 1.577197 wx 0.5821485 wy - 5.75251 7.30172 0.00000 t % 1.595415 wx 0.5772638 wy - 5.76895 7.28347 0.00000 t % 1.613633 wx 0.5724319 wy - 5.78595 7.26441 0.00000 t % 1.632703 wx 0.5674305 wy - 5.80277 7.24540 0.00000 t % 1.651783 wx 0.5624843 wy - 5.81940 7.22645 0.00000 t % 1.670862 wx 0.5575957 wy - 5.83584 7.20755 0.00000 t % 1.689942 wx 0.5527645 wy - 5.85284 7.18784 0.00000 t % 1.709913 wx 0.5477686 wy - 5.86966 7.16818 0.00000 t % 1.729895 wx 0.5428326 wy - 5.88629 7.14859 0.00000 t % 1.749877 wx 0.5379587 wy - 5.90272 7.12908 0.00000 t % 1.769859 wx 0.5331464 wy - 5.91973 7.10874 0.00000 t % 1.790775 wx 0.5281749 wy - 5.93655 7.08847 0.00000 t % 1.811702 wx 0.5232674 wy - 5.95318 7.06828 0.00000 t % 1.832628 wx 0.5184262 wy - 5.96961 7.04819 0.00000 t % 1.853555 wx 0.5136505 wy - 5.98662 7.02725 0.00000 t % 1.87546 wx 0.5087213 wy - 6.00344 7.00640 0.00000 t % 1.897377 wx 0.50386 wy - 6.02007 6.98565 0.00000 t % 1.919293 wx 0.4990686 wy - 6.03650 6.96501 0.00000 t % 1.94121 wx 0.4943463 wy - 6.05351 6.94351 0.00000 t % 1.964151 wx 0.4894764 wy - 6.07033 6.92212 0.00000 t % 1.987103 wx 0.4846779 wy - 6.08696 6.90084 0.00000 t % 2.010056 wx 0.4799523 wy - 6.10339 6.87968 0.00000 t % 2.033009 wx 0.4752989 wy - 6.12040 6.85767 0.00000 t % 2.057035 wx 0.470504 wy - 6.13722 6.83577 0.00000 t % 2.081073 wx 0.4657835 wy - 6.15385 6.81401 0.00000 t % 2.105111 wx 0.4611386 wy - 6.17028 6.79238 0.00000 t % 2.12915 wx 0.4565682 wy - 6.18729 6.76988 0.00000 t % 2.154312 wx 0.4518626 wy - 6.20411 6.74752 0.00000 t % 2.179487 wx 0.4472338 wy - 6.23717 6.70325 0.00000 t % 2.229837 wx 0.4382079 wy - 6.27100 6.65754 0.00000 t % 2.282554 wx 0.4290794 wy - 6.30406 6.61247 0.00000 t % 2.335286 wx 0.4202655 wy - 6.32107 6.58914 0.00000 t % 2.362884 wx 0.415775 wy - 6.35452 6.54300 0.00000 t % 2.418108 wx 0.4070334 wy - 6.38796 6.49652 0.00000 t % 2.474624 wx 0.398413 wy - 6.42140 6.44971 0.00000 t % 2.53246 wx 0.3899174 wy - 6.45485 6.40261 0.00000 t % 2.591649 wx 0.38155 wy - 6.48829 6.35522 0.00000 t % 2.65222 wx 0.3733137 wy - 6.52174 6.30757 0.00000 t % 2.714207 wx 0.365211 wy - 6.55518 6.25967 0.00000 t % 2.777643 wx 0.3572438 wy - 6.58863 6.21155 0.00000 t % 2.842562 wx 0.349414 wy - 6.62207 6.16322 0.00000 t % 2.908997 wx 0.3417227 wy - 6.65552 6.11469 0.00000 t % 2.976986 wx 0.334171 wy - 6.68896 6.06599 0.00000 t % 3.046563 wx 0.3267595 wy - 6.72241 6.01713 0.00000 t % 3.117767 wx 0.3194884 wy - 6.75585 5.96811 0.00000 t % 3.190635 wx 0.3123578 wy - 6.78930 5.91896 0.00000 t % 3.265206 wx 0.3053674 wy - 6.82274 5.86969 0.00000 t % 3.341519 wx 0.2985166 wy - 6.88963 5.77083 0.00000 t % 3.499539 wx 0.2852307 wy - 6.95652 5.67161 0.00000 t % 3.665032 wx 0.2724914 wy - 7.02341 5.57211 0.00000 t % 3.838351 wx 0.2602872 wy - 7.09030 5.47239 0.00000 t % 4.019866 wx 0.2486042 wy - 7.15719 5.37250 0.00000 t % 4.209965 wx 0.237427 wy - 7.29097 5.17237 0.00000 t % 4.617557 wx 0.2165225 wy - 7.42475 4.97195 0.00000 t % 5.06461 wx 0.1974328 wy - 7.55853 4.77139 0.00000 t % 5.554945 wx 0.1800144 wy -10.00000 1.10924 0.00000 tf % 30 wx 0.03333333 wy + 0.00000 1.65927 0.00000 ti % 0.02 wx 0.01999733 wy + 0.53512 2.41722 0.00000 t % 0.03039902 wx 0.03038966 wy + 0.80268 2.79607 0.00000 t % 0.03747782 wx 0.03746028 wy + 1.07023 3.17477 0.00000 t % 0.04620502 wx 0.04617216 wy + 1.33779 3.55324 0.00000 t % 0.05696445 wx 0.05690291 wy + 1.60535 3.93136 0.00000 t % 0.07022936 wx 0.07011412 wy + 1.73913 4.12023 0.00000 t % 0.07797872 wx 0.07782105 wy + 1.87291 4.30895 0.00000 t % 0.08658317 wx 0.08636745 wy + 2.00669 4.49747 0.00000 t % 0.09613707 wx 0.09584198 wy + 2.14047 4.68574 0.00000 t % 0.1067452 wx 0.1063416 wy + 2.27425 4.87372 0.00000 t % 0.1185238 wx 0.1179719 wy + 2.40803 5.06133 0.00000 t % 0.1316022 wx 0.1308476 wy + 2.47492 5.15497 0.00000 t % 0.1386729 wx 0.1377908 wy + 2.54181 5.24848 0.00000 t % 0.1461236 wx 0.1450924 wy + 2.60870 5.34186 0.00000 t % 0.1539746 wx 0.1527692 wy + 2.67559 5.43508 0.00000 t % 0.1622474 wx 0.1608386 wy + 2.74247 5.52814 0.00000 t % 0.1709647 wx 0.1693183 wy + 2.80936 5.62100 0.00000 t % 0.1801504 wx 0.1782265 wy + 2.87625 5.71366 0.00000 t % 0.1898296 wx 0.1875818 wy + 2.94314 5.80608 0.00000 t % 0.2000288 wx 0.197403 wy + 3.01003 5.89825 0.00000 t % 0.2107761 wx 0.2077092 wy + 3.07692 5.99014 0.00000 t % 0.2221007 wx 0.2185194 wy + 3.14381 6.08172 0.00000 t % 0.2340339 wx 0.2298526 wy + 3.21070 6.17295 0.00000 t % 0.2466081 wx 0.2417276 wy + 3.27759 6.26380 0.00000 t % 0.259858 wx 0.2541627 wy + 3.31104 6.30907 0.00000 t % 0.2667475 wx 0.2605958 wy + 3.34448 6.35423 0.00000 t % 0.2738198 wx 0.2671755 wy + 3.37793 6.39928 0.00000 t % 0.2810795 wx 0.2739039 wy + 3.41137 6.44420 0.00000 t % 0.2885317 wx 0.2807828 wy + 3.44482 6.48900 0.00000 t % 0.2961814 wx 0.2878142 wy + 3.47826 6.53366 0.00000 t % 0.304034 wx 0.2949999 wy + 3.51171 6.57818 0.00000 t % 0.3120948 wx 0.3023416 wy + 3.54515 6.62255 0.00000 t % 0.3203693 wx 0.3098408 wy + 3.57860 6.66677 0.00000 t % 0.3288632 wx 0.3174989 wy + 3.61204 6.71083 0.00000 t % 0.3375822 wx 0.3253172 wy + 3.64548 6.75472 0.00000 t % 0.3465325 wx 0.3332968 wy + 3.67893 6.79843 0.00000 t % 0.35572 wx 0.3414385 wy + 3.71237 6.84195 0.00000 t % 0.3651511 wx 0.3497432 wy + 3.74582 6.88528 0.00000 t % 0.3748323 wx 0.3582112 wy + 3.77926 6.92841 0.00000 t % 0.3847701 wx 0.3668428 wy + 3.81271 6.97132 0.00000 t % 0.3949714 wx 0.3756381 wy + 3.84615 7.01400 0.00000 t % 0.4054432 wx 0.3845967 wy + 3.87960 7.05645 0.00000 t % 0.4161926 wx 0.3937181 wy + 3.91304 7.09866 0.00000 t % 0.427227 wx 0.4030013 wy + 3.94649 7.14061 0.00000 t % 0.438554 wx 0.4124451 wy + 3.97993 7.18230 0.00000 t % 0.4501812 wx 0.422048 wy + 4.01338 7.22370 0.00000 t % 0.4621168 wx 0.4318079 wy + 4.04682 7.26482 0.00000 t % 0.4743688 wx 0.4417224 wy + 4.06365 7.28539 0.00000 t % 0.4806572 wx 0.4467698 wy + 4.09667 7.32552 0.00000 t % 0.493234 wx 0.4567794 wy + 4.13054 7.36638 0.00000 t % 0.5064821 wx 0.4671997 wy + 4.16356 7.40585 0.00000 t % 0.5197347 wx 0.4774952 wy + 4.19743 7.44601 0.00000 t % 0.5336946 wx 0.4882002 wy + 4.23045 7.48478 0.00000 t % 0.5476592 wx 0.4987638 wy + 4.24749 7.50465 0.00000 t % 0.5550117 wx 0.504267 wy + 4.26432 7.52418 0.00000 t % 0.5623692 wx 0.5097332 wy + 4.28094 7.54335 0.00000 t % 0.5697266 wx 0.5151585 wy + 4.29734 7.56218 0.00000 t % 0.5770841 wx 0.5205428 wy + 4.31438 7.58165 0.00000 t % 0.5848317 wx 0.5261683 wy + 4.33121 7.60077 0.00000 t % 0.5925844 wx 0.5317518 wy + 4.34783 7.61953 0.00000 t % 0.6003371 wx 0.5372894 wy + 4.36423 7.63795 0.00000 t % 0.6080899 wx 0.5427811 wy + 4.38127 7.65698 0.00000 t % 0.6162537 wx 0.5485143 wy + 4.39810 7.67566 0.00000 t % 0.624423 wx 0.5542001 wy + 4.41472 7.69398 0.00000 t % 0.6325923 wx 0.5598346 wy + 4.43112 7.71195 0.00000 t % 0.6407616 wx 0.5654179 wy + 4.44816 7.73051 0.00000 t % 0.6493641 wx 0.5712417 wy + 4.46499 7.74871 0.00000 t % 0.6579723 wx 0.5770124 wy + 4.48161 7.76656 0.00000 t % 0.6665805 wx 0.582726 wy + 4.49801 7.78406 0.00000 t % 0.6751887 wx 0.5883827 wy + 4.51505 7.80211 0.00000 t % 0.6842534 wx 0.5942776 wy + 4.53188 7.81981 0.00000 t % 0.6933241 wx 0.6001132 wy + 4.54849 7.83715 0.00000 t % 0.7023948 wx 0.6058857 wy + 4.56489 7.85413 0.00000 t % 0.7114655 wx 0.611595 wy + 4.58194 7.87165 0.00000 t % 0.7210172 wx 0.617539 wy + 4.59877 7.88881 0.00000 t % 0.7305753 wx 0.6234172 wy + 4.61538 7.90560 0.00000 t % 0.7401334 wx 0.6292257 wy + 4.63178 7.92205 0.00000 t % 0.7496915 wx 0.6349649 wy + 4.64883 7.93899 0.00000 t % 0.7597564 wx 0.6409334 wy + 4.66566 7.95558 0.00000 t % 0.769828 wx 0.6468294 wy + 4.68227 7.97180 0.00000 t % 0.7798996 wx 0.6526491 wy + 4.69867 7.98767 0.00000 t % 0.7899712 wx 0.6583927 wy + 4.71572 8.00401 0.00000 t % 0.8005769 wx 0.6643592 wy + 4.73255 8.01998 0.00000 t % 0.8111896 wx 0.670246 wy + 4.74916 8.03560 0.00000 t % 0.8218024 wx 0.6760497 wy + 4.76556 8.05086 0.00000 t % 0.8324151 wx 0.6817707 wy + 4.78261 8.06656 0.00000 t % 0.8435906 wx 0.6877062 wy + 4.79944 8.08190 0.00000 t % 0.8547736 wx 0.6935551 wy + 4.81605 8.09688 0.00000 t % 0.8659565 wx 0.6993139 wy + 4.83245 8.11150 0.00000 t % 0.8771395 wx 0.7049834 wy + 4.84950 8.12653 0.00000 t % 0.8889154 wx 0.7108576 wy + 4.86633 8.14120 0.00000 t % 0.9006992 wx 0.7166382 wy + 4.88294 8.15550 0.00000 t % 0.912483 wx 0.7223219 wy + 4.89934 8.16946 0.00000 t % 0.9242668 wx 0.7279097 wy + 4.91639 8.18379 0.00000 t % 0.9366754 wx 0.733691 wy + 4.93322 8.19776 0.00000 t % 0.9490924 wx 0.7393719 wy + 4.94983 8.21137 0.00000 t % 0.9615093 wx 0.7449493 wy + 4.96623 8.22463 0.00000 t % 0.9739262 wx 0.7504246 wy + 4.98328 8.23823 0.00000 t % 0.9870015 wx 0.7560809 wy + 5.00011 8.25147 0.00000 t % 1.000086 wx 0.7616301 wy + 5.01672 8.26436 0.00000 t % 1.01317 wx 0.7670698 wy + 5.03312 8.27691 0.00000 t % 1.026254 wx 0.7724015 wy + 5.05017 8.28976 0.00000 t % 1.040032 wx 0.7779005 wy + 5.06700 8.30225 0.00000 t % 1.053819 wx 0.7832865 wy + 5.08361 8.31440 0.00000 t % 1.067606 wx 0.7885574 wy + 5.10001 8.32621 0.00000 t % 1.081393 wx 0.793715 wy + 5.11706 8.33828 0.00000 t % 1.095911 wx 0.7990254 wy + 5.13389 8.35001 0.00000 t % 1.110439 wx 0.8042174 wy + 5.15050 8.36140 0.00000 t % 1.124966 wx 0.8092895 wy + 5.16690 8.37245 0.00000 t % 1.139494 wx 0.8142437 wy + 5.18395 8.38375 0.00000 t % 1.154792 wx 0.8193355 wy + 5.20078 8.39470 0.00000 t % 1.170101 wx 0.8243045 wy + 5.21739 8.40531 0.00000 t % 1.185409 wx 0.8291496 wy + 5.23379 8.41560 0.00000 t % 1.200717 wx 0.8338733 wy + 5.25084 8.42609 0.00000 t % 1.216838 wx 0.8387188 wy + 5.26767 8.43625 0.00000 t % 1.232968 wx 0.8434382 wy + 5.28428 8.44609 0.00000 t % 1.249099 wx 0.8480309 wy + 5.30068 8.45561 0.00000 t % 1.26523 wx 0.8524996 wy + 5.31773 8.46530 0.00000 t % 1.282216 wx 0.8570743 wy + 5.33456 8.47467 0.00000 t % 1.299214 wx 0.8615206 wy + 5.35117 8.48373 0.00000 t % 1.316211 wx 0.8658387 wy + 5.36757 8.49248 0.00000 t % 1.333209 wx 0.8700314 wy + 5.38462 8.50137 0.00000 t % 1.351108 wx 0.8743145 wy + 5.40145 8.50995 0.00000 t % 1.369019 wx 0.8784683 wy + 5.41806 8.51823 0.00000 t % 1.386929 wx 0.8824935 wy + 5.43446 8.52622 0.00000 t % 1.40484 wx 0.8863934 wy + 5.45151 8.53432 0.00000 t % 1.423701 wx 0.8903684 wy + 5.46834 8.54213 0.00000 t % 1.442574 wx 0.8942147 wy + 5.48495 8.54965 0.00000 t % 1.461447 wx 0.8979333 wy + 5.50135 8.55688 0.00000 t % 1.48032 wx 0.9015279 wy + 5.51839 8.56421 0.00000 t % 1.500194 wx 0.9051833 wy + 5.53523 8.57126 0.00000 t % 1.520081 wx 0.9087118 wy + 5.55184 8.57803 0.00000 t % 1.539968 wx 0.912115 wy + 5.56824 8.58453 0.00000 t % 1.559855 wx 0.915397 wy + 5.58528 8.59111 0.00000 t % 1.580797 wx 0.9187263 wy + 5.60212 8.59742 0.00000 t % 1.601753 wx 0.9219319 wy + 5.61873 8.60347 0.00000 t % 1.622708 wx 0.9250161 wy + 5.63513 8.60926 0.00000 t % 1.643664 wx 0.927983 wy + 5.65217 8.61511 0.00000 t % 1.665731 wx 0.930985 wy + 5.66901 8.62071 0.00000 t % 1.687812 wx 0.933868 wy + 5.68562 8.62607 0.00000 t % 1.709894 wx 0.9366345 wy + 5.70202 8.63120 0.00000 t % 1.731975 wx 0.9392889 wy + 5.71906 8.63635 0.00000 t % 1.755228 wx 0.9419676 wy + 5.73590 8.64128 0.00000 t % 1.778496 wx 0.9445331 wy + 5.75251 8.64598 0.00000 t % 1.801764 wx 0.9469884 wy + 5.76891 8.65047 0.00000 t % 1.825032 wx 0.9493377 wy + 5.78595 8.65497 0.00000 t % 1.849533 wx 0.951702 wy + 5.80278 8.65927 0.00000 t % 1.874051 wx 0.95396 wy + 5.81940 8.66335 0.00000 t % 1.89857 wx 0.9561148 wy + 5.83580 8.66724 0.00000 t % 1.923088 wx 0.958171 wy + 5.85284 8.67114 0.00000 t % 1.948906 wx 0.9602342 wy + 5.86967 8.67484 0.00000 t % 1.974741 wx 0.9621989 wy + 5.88629 8.67836 0.00000 t % 2.000577 wx 0.9640683 wy + 5.90269 8.68169 0.00000 t % 2.026412 wx 0.9658469 wy + 5.91973 8.68503 0.00000 t % 2.053618 wx 0.9676262 wy + 5.93656 8.68819 0.00000 t % 2.080841 wx 0.9693155 wy + 5.95318 8.69118 0.00000 t % 2.108065 wx 0.9709178 wy + 5.96958 8.69401 0.00000 t % 2.135288 wx 0.9724377 wy + 5.98662 8.69683 0.00000 t % 2.163955 wx 0.9739535 wy + 6.00345 8.69950 0.00000 t % 2.192641 wx 0.9753879 wy + 6.02007 8.70201 0.00000 t % 2.221328 wx 0.9767443 wy + 6.03647 8.70439 0.00000 t % 2.250014 wx 0.9780267 wy + 6.05351 8.70675 0.00000 t % 2.280221 wx 0.9793016 wy + 6.07034 8.70897 0.00000 t % 2.310449 wx 0.980504 wy + 6.08696 8.71106 0.00000 t % 2.340676 wx 0.9816372 wy + 6.10336 8.71303 0.00000 t % 2.370903 wx 0.9827051 wy + 6.12040 8.71498 0.00000 t % 2.402734 wx 0.9837631 wy + 6.13723 8.71681 0.00000 t % 2.434585 wx 0.9847576 wy + 6.15385 8.71853 0.00000 t % 2.466437 wx 0.9856916 wy + 6.17025 8.72014 0.00000 t % 2.498288 wx 0.9865687 wy + 6.18729 8.72173 0.00000 t % 2.531829 wx 0.9874347 wy + 6.20412 8.72322 0.00000 t % 2.565392 wx 0.9882456 wy + 6.22074 8.72461 0.00000 t % 2.598955 wx 0.9890046 wy + 6.23714 8.72591 0.00000 t % 2.632517 wx 0.9897147 wy + 6.25418 8.72718 0.00000 t % 2.66786 wx 0.9904133 wy + 6.27101 8.72838 0.00000 t % 2.703226 wx 0.991065 wy + 6.30403 8.73052 0.00000 t % 2.773959 wx 0.9922391 wy + 6.33790 8.73247 0.00000 t % 2.848466 wx 0.99331 wy + 6.37091 8.73416 0.00000 t % 2.922999 wx 0.9942338 wy + 6.38796 8.73495 0.00000 t % 2.962241 wx 0.9946679 wy + 6.42140 8.73636 0.00000 t % 3.040778 wx 0.9954412 wy + 6.45485 8.73759 0.00000 t % 3.121398 wx 0.9961187 wy + 6.48829 8.73866 0.00000 t % 3.204155 wx 0.9967098 wy + 6.52174 8.73959 0.00000 t % 3.289106 wx 0.9972232 wy + 6.55518 8.74040 0.00000 t % 3.376309 wx 0.9976671 wy + 6.58863 8.74109 0.00000 t % 3.465824 wx 0.9980491 wy + 6.62207 8.74169 0.00000 t % 3.557713 wx 0.9983764 wy + 6.65552 8.74219 0.00000 t % 3.652037 wx 0.9986553 wy + 6.68896 8.74262 0.00000 t % 3.748863 wx 0.9988919 wy + 6.75585 8.74329 0.00000 t % 3.950283 wx 0.9992592 wy + 6.82274 8.74375 0.00000 t % 4.162526 wx 0.9995154 wy + 6.88963 8.74407 0.00000 t % 4.386172 wx 0.9996901 wy + 6.95652 8.74428 0.00000 t % 4.621834 wx 0.9998066 wy + 7.09030 8.74450 0.00000 t % 5.131824 wx 0.9999302 wy + 7.35786 8.74462 0.00000 t % 6.326835 wx 0.9999936 wy +10.00000 8.74463 0.00000 tf % 50 wx 1 wy + + 2 [ ] zValues + 2 cstyle % (x () -> y ()) + 0.00000 8.74439 0.00000 ti % 0.02 wx 0.9998667 wy + 0.26756 8.74426 0.00000 t % 0.02465726 wx 0.9997974 wy + 0.53512 8.74407 0.00000 t % 0.03039902 wx 0.9996921 wy + 0.80268 8.74378 0.00000 t % 0.03747782 wx 0.9995321 wy + 1.07023 8.74334 0.00000 t % 0.04620502 wx 0.999289 wy + 1.20401 8.74304 0.00000 t % 0.05130344 wx 0.9991236 wy + 1.33779 8.74267 0.00000 t % 0.05696445 wx 0.9989198 wy + 1.47157 8.74222 0.00000 t % 0.06325011 wx 0.9986686 wy + 1.60535 8.74166 0.00000 t % 0.07022936 wx 0.9983592 wy + 1.73913 8.74097 0.00000 t % 0.07797872 wx 0.997978 wy + 1.87291 8.74011 0.00000 t % 0.08658317 wx 0.9975086 wy + 2.00669 8.73906 0.00000 t % 0.09613707 wx 0.9969306 wy + 2.07358 8.73845 0.00000 t % 0.1013024 wx 0.9965933 wy + 2.14047 8.73777 0.00000 t % 0.1067452 wx 0.9962191 wy + 2.20736 8.73702 0.00000 t % 0.1124804 wx 0.995804 wy + 2.27425 8.73618 0.00000 t % 0.1185238 wx 0.9953435 wy + 2.34114 8.73525 0.00000 t % 0.1248919 wx 0.9948329 wy + 2.40803 8.73422 0.00000 t % 0.1316022 wx 0.9942667 wy + 2.47492 8.73307 0.00000 t % 0.1386729 wx 0.9936389 wy + 2.54181 8.73180 0.00000 t % 0.1461236 wx 0.9929429 wy + 2.60870 8.73040 0.00000 t % 0.1539746 wx 0.9921715 wy + 2.67559 8.72884 0.00000 t % 0.1622474 wx 0.9913167 wy + 2.74247 8.72710 0.00000 t % 0.1709647 wx 0.9903696 wy + 2.80936 8.72519 0.00000 t % 0.1801504 wx 0.9893206 wy + 2.87625 8.72306 0.00000 t % 0.1898296 wx 0.9881589 wy + 2.94314 8.72070 0.00000 t % 0.2000288 wx 0.9868729 wy + 2.97659 8.71943 0.00000 t % 0.2053322 wx 0.9861793 wy + 3.01003 8.71808 0.00000 t % 0.2107761 wx 0.9854497 wy + 3.04348 8.71667 0.00000 t % 0.2163643 wx 0.9846823 wy + 3.07692 8.71519 0.00000 t % 0.2221007 wx 0.9838752 wy + 3.11037 8.71363 0.00000 t % 0.2279892 wx 0.9830265 wy + 3.14381 8.71198 0.00000 t % 0.2340339 wx 0.982134 wy + 3.17726 8.71025 0.00000 t % 0.2402387 wx 0.9811958 wy + 3.21070 8.70843 0.00000 t % 0.2466081 wx 0.9802094 wy + 3.24415 8.70651 0.00000 t % 0.2531464 wx 0.9791727 wy + 3.27759 8.70450 0.00000 t % 0.259858 wx 0.9780831 wy + 3.31104 8.70237 0.00000 t % 0.2667475 wx 0.9769381 wy + 3.34448 8.70014 0.00000 t % 0.2738198 wx 0.975735 wy + 3.37793 8.69779 0.00000 t % 0.2810795 wx 0.9744712 wy + 3.41137 8.69533 0.00000 t % 0.2885317 wx 0.9731438 wy + 3.44482 8.69273 0.00000 t % 0.2961814 wx 0.9717497 wy + 3.47826 8.69000 0.00000 t % 0.304034 wx 0.970286 wy + 3.51171 8.68713 0.00000 t % 0.3120948 wx 0.9687493 wy + 3.54515 8.68411 0.00000 t % 0.3203693 wx 0.9671364 wy + 3.57860 8.68094 0.00000 t % 0.3288632 wx 0.9654438 wy + 3.61204 8.67760 0.00000 t % 0.3375822 wx 0.963668 wy + 3.64548 8.67410 0.00000 t % 0.3465325 wx 0.9618053 wy + 3.67893 8.67042 0.00000 t % 0.35572 wx 0.959852 wy + 3.71237 8.66655 0.00000 t % 0.3651511 wx 0.957804 wy + 3.72921 8.66453 0.00000 t % 0.3699917 wx 0.9567362 wy + 3.76222 8.66042 0.00000 t % 0.3796728 wx 0.9545674 wy + 3.79610 8.65599 0.00000 t % 0.3898707 wx 0.9522356 wy + 3.82911 8.65146 0.00000 t % 0.4000721 wx 0.9498554 wy + 3.86299 8.64657 0.00000 t % 0.4108179 wx 0.9472979 wy + 3.89600 8.64158 0.00000 t % 0.4215673 wx 0.944689 wy + 3.91304 8.63891 0.00000 t % 0.427227 wx 0.9432954 wy + 3.92988 8.63620 0.00000 t % 0.4328905 wx 0.9418874 wy + 3.94649 8.63347 0.00000 t % 0.438554 wx 0.940466 wy + 3.96289 8.63070 0.00000 t % 0.4442174 wx 0.9390315 wy + 3.97993 8.62776 0.00000 t % 0.4501812 wx 0.9375068 wy + 3.99676 8.62478 0.00000 t % 0.456149 wx 0.9359669 wy + 4.01338 8.62177 0.00000 t % 0.4621168 wx 0.9344129 wy + 4.02978 8.61873 0.00000 t % 0.4680846 wx 0.9328451 wy + 4.04682 8.61549 0.00000 t % 0.4743688 wx 0.9311794 wy + 4.06365 8.61222 0.00000 t % 0.4806572 wx 0.9294978 wy + 4.08027 8.60891 0.00000 t % 0.4869456 wx 0.9278015 wy + 4.09667 8.60557 0.00000 t % 0.493234 wx 0.9260907 wy + 4.11371 8.60201 0.00000 t % 0.4998559 wx 0.924274 wy + 4.13054 8.59842 0.00000 t % 0.5064821 wx 0.9224407 wy + 4.14716 8.59478 0.00000 t % 0.5131084 wx 0.9205922 wy + 4.16356 8.59111 0.00000 t % 0.5197347 wx 0.9187288 wy + 4.18060 8.58721 0.00000 t % 0.5267123 wx 0.9167508 wy + 4.19743 8.58326 0.00000 t % 0.5336946 wx 0.9147557 wy + 4.21405 8.57928 0.00000 t % 0.5406769 wx 0.9127451 wy + 4.23045 8.57525 0.00000 t % 0.5476592 wx 0.9107192 wy + 4.24749 8.57097 0.00000 t % 0.5550117 wx 0.9085699 wy + 4.26432 8.56665 0.00000 t % 0.5623692 wx 0.9064031 wy + 4.28094 8.56228 0.00000 t % 0.5697266 wx 0.9042205 wy + 4.29734 8.55788 0.00000 t % 0.5770841 wx 0.9020225 wy + 4.31438 8.55319 0.00000 t % 0.5848317 wx 0.8996919 wy + 4.33121 8.54846 0.00000 t % 0.5925844 wx 0.8973436 wy + 4.34783 8.54368 0.00000 t % 0.6003371 wx 0.8949795 wy + 4.36423 8.53886 0.00000 t % 0.6080899 wx 0.8926001 wy + 4.38127 8.53373 0.00000 t % 0.6162537 wx 0.8900786 wy + 4.39810 8.52856 0.00000 t % 0.624423 wx 0.8875395 wy + 4.41472 8.52334 0.00000 t % 0.6325923 wx 0.8849849 wy + 4.43112 8.51807 0.00000 t % 0.6407616 wx 0.8824154 wy + 4.44816 8.51248 0.00000 t % 0.6493641 wx 0.879694 wy + 4.46499 8.50683 0.00000 t % 0.6579723 wx 0.8769555 wy + 4.48161 8.50114 0.00000 t % 0.6665805 wx 0.8742021 wy + 4.49801 8.49539 0.00000 t % 0.6751887 wx 0.8714344 wy + 4.51505 8.48930 0.00000 t % 0.6842534 wx 0.8685051 wy + 4.53188 8.48314 0.00000 t % 0.6933241 wx 0.8655594 wy + 4.54849 8.47694 0.00000 t % 0.7023948 wx 0.8625998 wy + 4.56489 8.47069 0.00000 t % 0.7114655 wx 0.859627 wy + 4.58194 8.46405 0.00000 t % 0.7210172 wx 0.856483 wy + 4.59877 8.45736 0.00000 t % 0.7305753 wx 0.8533236 wy + 4.61538 8.45061 0.00000 t % 0.7401334 wx 0.8501518 wy + 4.63178 8.44382 0.00000 t % 0.7496915 wx 0.8469682 wy + 4.64883 8.43661 0.00000 t % 0.7597564 wx 0.8436039 wy + 4.66566 8.42934 0.00000 t % 0.769828 wx 0.8402259 wy + 4.68227 8.42202 0.00000 t % 0.7798996 wx 0.8368373 wy + 4.69867 8.41465 0.00000 t % 0.7899712 wx 0.8334389 wy + 4.71572 8.40684 0.00000 t % 0.8005769 wx 0.8298505 wy + 4.73255 8.39897 0.00000 t % 0.8111896 wx 0.8262507 wy + 4.74916 8.39104 0.00000 t % 0.8218024 wx 0.8226426 wy + 4.76556 8.38306 0.00000 t % 0.8324151 wx 0.8190273 wy + 4.78261 8.37461 0.00000 t % 0.8435906 wx 0.8152132 wy + 4.79944 8.36610 0.00000 t % 0.8547736 wx 0.8113904 wy + 4.81605 8.35753 0.00000 t % 0.8659565 wx 0.8075624 wy + 4.83245 8.34892 0.00000 t % 0.8771395 wx 0.8037301 wy + 4.84950 8.33979 0.00000 t % 0.8889154 wx 0.799691 wy + 4.86633 8.33061 0.00000 t % 0.9006992 wx 0.7956465 wy + 4.88294 8.32138 0.00000 t % 0.912483 wx 0.7916004 wy + 4.89934 8.31209 0.00000 t % 0.9242668 wx 0.7875536 wy + 4.91639 8.30227 0.00000 t % 0.9366754 wx 0.7832927 wy + 4.93322 8.29239 0.00000 t % 0.9490924 wx 0.7790305 wy + 4.94983 8.28246 0.00000 t % 0.9615093 wx 0.7747708 wy + 4.96623 8.27248 0.00000 t % 0.9739262 wx 0.7705148 wy + 4.98328 8.26193 0.00000 t % 0.9870015 wx 0.7660382 wy + 5.00011 8.25132 0.00000 t % 1.000086 wx 0.7615649 wy + 5.01672 8.24067 0.00000 t % 1.01317 wx 0.7570991 wy + 5.03312 8.22997 0.00000 t % 1.026254 wx 0.7526418 wy + 5.05017 8.21867 0.00000 t % 1.040032 wx 0.7479586 wy + 5.06700 8.20731 0.00000 t % 1.053819 wx 0.743284 wy + 5.08361 8.19592 0.00000 t % 1.067606 wx 0.7386224 wy + 5.10001 8.18449 0.00000 t % 1.081393 wx 0.7339748 wy + 5.11706 8.17241 0.00000 t % 1.095911 wx 0.7290971 wy + 5.13389 8.16029 0.00000 t % 1.110439 wx 0.724234 wy + 5.15050 8.14814 0.00000 t % 1.124966 wx 0.7193899 wy + 5.16690 8.13595 0.00000 t % 1.139494 wx 0.7145659 wy + 5.18395 8.12309 0.00000 t % 1.154792 wx 0.7095089 wy + 5.20078 8.11019 0.00000 t % 1.170101 wx 0.7044731 wy + 5.21739 8.09726 0.00000 t % 1.185409 wx 0.6994628 wy + 5.23379 8.08431 0.00000 t % 1.200717 wx 0.6944792 wy + 5.25084 8.07065 0.00000 t % 1.216838 wx 0.6892611 wy + 5.26767 8.05696 0.00000 t % 1.232968 wx 0.6840712 wy + 5.28428 8.04326 0.00000 t % 1.249099 wx 0.6789139 wy + 5.30068 8.02954 0.00000 t % 1.26523 wx 0.6737902 wy + 5.31773 8.01508 0.00000 t % 1.282216 wx 0.6684319 wy + 5.33456 8.00060 0.00000 t % 1.299214 wx 0.6631092 wy + 5.35117 7.98611 0.00000 t % 1.316211 wx 0.6578264 wy + 5.36757 7.97162 0.00000 t % 1.333209 wx 0.6525845 wy + 5.38462 7.95636 0.00000 t % 1.351108 wx 0.6471094 wy + 5.40145 7.94109 0.00000 t % 1.369019 wx 0.6416774 wy + 5.41806 7.92583 0.00000 t % 1.386929 wx 0.636293 wy + 5.43446 7.91058 0.00000 t % 1.40484 wx 0.6309568 wy + 5.45151 7.89453 0.00000 t % 1.423701 wx 0.6253902 wy + 5.46834 7.87849 0.00000 t % 1.442574 wx 0.6198745 wy + 5.48495 7.86246 0.00000 t % 1.461447 wx 0.6144139 wy + 5.50135 7.84646 0.00000 t % 1.48032 wx 0.6090088 wy + 5.51839 7.82963 0.00000 t % 1.500194 wx 0.6033775 wy + 5.53523 7.81283 0.00000 t % 1.520081 wx 0.5978048 wy + 5.55184 7.79606 0.00000 t % 1.539968 wx 0.5922947 wy + 5.56824 7.77932 0.00000 t % 1.559855 wx 0.5868474 wy + 5.58528 7.76175 0.00000 t % 1.580797 wx 0.5811792 wy + 5.60212 7.74420 0.00000 t % 1.601753 wx 0.575577 wy + 5.61873 7.72671 0.00000 t % 1.622708 wx 0.5700446 wy + 5.63513 7.70927 0.00000 t % 1.643664 wx 0.564582 wy + 5.65217 7.69097 0.00000 t % 1.665731 wx 0.5589049 wy + 5.66901 7.67272 0.00000 t % 1.687812 wx 0.5533009 wy + 5.68562 7.65453 0.00000 t % 1.709894 wx 0.5477735 wy + 5.70202 7.63642 0.00000 t % 1.731975 wx 0.5423224 wy + 5.71906 7.61742 0.00000 t % 1.755228 wx 0.536664 wy + 5.73590 7.59850 0.00000 t % 1.778496 wx 0.5310854 wy + 5.75251 7.57966 0.00000 t % 1.801764 wx 0.5255897 wy + 5.76891 7.56091 0.00000 t % 1.825032 wx 0.520176 wy + 5.78595 7.54126 0.00000 t % 1.849533 wx 0.5145633 wy + 5.80278 7.52170 0.00000 t % 1.874051 wx 0.5090362 wy + 5.81940 7.50225 0.00000 t % 1.89857 wx 0.5035975 wy + 5.83580 7.48290 0.00000 t % 1.923088 wx 0.4982461 wy + 5.85284 7.46264 0.00000 t % 1.948906 wx 0.4927042 wy + 5.86967 7.44249 0.00000 t % 1.974741 wx 0.4872531 wy + 5.88629 7.42247 0.00000 t % 2.000577 wx 0.4818952 wy + 5.90269 7.40256 0.00000 t % 2.026412 wx 0.476629 wy + 5.91973 7.38174 0.00000 t % 2.053618 wx 0.4711813 wy + 5.93656 7.36105 0.00000 t % 2.080841 wx 0.4658287 wy + 5.95318 7.34050 0.00000 t % 2.108065 wx 0.4605731 wy + 5.96958 7.32010 0.00000 t % 2.135288 wx 0.4554129 wy + 5.98662 7.29876 0.00000 t % 2.163955 wx 0.4500803 wy + 6.00345 7.27758 0.00000 t % 2.192641 wx 0.4448461 wy + 6.02007 7.25655 0.00000 t % 2.221328 wx 0.4397119 wy + 6.03647 7.23569 0.00000 t % 2.250014 wx 0.4346759 wy + 6.05351 7.21390 0.00000 t % 2.280221 wx 0.4294766 wy + 6.07034 7.19227 0.00000 t % 2.310449 wx 0.4243782 wy + 6.10336 7.14955 0.00000 t % 2.370903 wx 0.4144855 wy + 6.13723 7.10533 0.00000 t % 2.434585 wx 0.4044868 wy + 6.17025 7.06187 0.00000 t % 2.498288 wx 0.3948978 wy + 6.18729 7.03931 0.00000 t % 2.531829 wx 0.3900085 wy + 6.22074 6.99479 0.00000 t % 2.598955 wx 0.3805394 wy + 6.25418 6.94998 0.00000 t % 2.66786 wx 0.3712388 wy + 6.28763 6.90489 0.00000 t % 2.738592 wx 0.3621104 wy + 6.32107 6.85954 0.00000 t % 2.8112 wx 0.3531567 wy + 6.35452 6.81397 0.00000 t % 2.885733 wx 0.3443801 wy + 6.38796 6.76817 0.00000 t % 2.962241 wx 0.3357822 wy + 6.42140 6.72219 0.00000 t % 3.040778 wx 0.3273639 wy + 6.45485 6.67603 0.00000 t % 3.121398 wx 0.3191258 wy + 6.48829 6.62971 0.00000 t % 3.204155 wx 0.3110679 wy + 6.52174 6.58325 0.00000 t % 3.289106 wx 0.3031898 wy + 6.55518 6.53667 0.00000 t % 3.376309 wx 0.2954905 wy + 6.62207 6.44317 0.00000 t % 3.557713 wx 0.2806231 wy + 6.68896 6.34932 0.00000 t % 3.748863 wx 0.266452 wy + 6.75585 6.25520 0.00000 t % 3.950283 wx 0.2529589 wy + 6.82274 6.16088 0.00000 t % 4.162526 wx 0.2401223 wy + 6.88963 6.06641 0.00000 t % 4.386172 wx 0.2279186 wy + 7.02341 5.87719 0.00000 t % 4.870158 wx 0.205308 wy + 7.29097 5.49825 0.00000 t % 6.004237 wx 0.166547 wy +10.00000 1.65951 0.00000 tf % 50 wx 0.02 wy { black 0 -3 13 1.65 NewList - {(fit_grid1x7)} TxLine - {( cc tanh(t)/t # z from grid1x7)} TxLine + {(curve0)} TxLine + {( cca tanh(t))} TxLine + {( tanh(t))} TxLine + {( weighing: with reciprocal variance (data and curve))} TxLine + {( j oc chi^2 1-R^2)} TxLine + 1 {( 0 0 1 )} CvTxLine + {(curve1)} TxLine + {( cca tanh(t)/t)} TxLine {( tanh(t)/t)} TxLine - {( data file: 3, weighing: constant)} TxLine - {( j z0 oc chi^2 1-R^2)} TxLine - 1 {( 0.1 0 0 1 )} CvTxLine + {( weighing: with reciprocal variance (data and curve))} TxLine + {( j oc chi^2 1-R^2)} TxLine + 2 {( 0 0 1 )} CvTxLine {(plot -> /home/jwu/gnew/L1.ps)} TxLine } oooinfo 1 eq { exec } { pop } ifelse