diff --git a/Base/Math/IntegratorMCMiser.h b/Base/Math/IntegratorMCMiser.h index 7034bb306fbbceccc9fda4585193c424877be97b..4e45d3f6754c76527b30a0888212f24182db830e 100644 --- a/Base/Math/IntegratorMCMiser.h +++ b/Base/Math/IntegratorMCMiser.h @@ -32,7 +32,7 @@ using miser_integrand = double (T::*)(const double*, size_t, const void*) const; //! Standard usage for integration inside a class T: //! - Create a handle to an integrator: //! 'auto integrator = make_integrator_miser(this, mem_function, dimension)' -//! - Call: 'integrator.integrate(lmin, lmax, data, nbr_points)' +//! - Call: 'integrator.integrate(lmin, lmax, data, n_points)' template <class T> class IntegratorMCMiser { @@ -50,7 +50,7 @@ public: //! perform the actual integration over the ranges [min_array, max_array] double integrate(double* min_array, double* max_array, const void* params, - size_t nbr_points) const; + size_t n_points) const; private: //! static function that can be passed to gsl integrator @@ -110,7 +110,7 @@ IntegratorMCMiser<T>::~IntegratorMCMiser() template <class T> double IntegratorMCMiser<T>::integrate(double* min_array, double* max_array, const void* params, - size_t nbr_points) const + size_t n_points) const { CallBackHolder cb = {m_object, m_member_function, params}; @@ -120,7 +120,7 @@ double IntegratorMCMiser<T>::integrate(double* min_array, double* max_array, con f.params = &cb; double result, error; - gsl_monte_miser_integrate(&f, min_array, max_array, m_dim, nbr_points, m_random_gen, + gsl_monte_miser_integrate(&f, min_array, max_array, m_dim, n_points, m_random_gen, m_gsl_workspace, &result, &error); return result; } diff --git a/Img3D/Build/PositionBuilders.cpp b/Img3D/Build/PositionBuilders.cpp index 487d20b741f298bc5d807fb7bb5246f67d89f958..1c5033792c27f4e2ed86ec566116d121305c49d6 100644 --- a/Img3D/Build/PositionBuilders.cpp +++ b/Img3D/Build/PositionBuilders.cpp @@ -114,14 +114,14 @@ std::vector<std::vector<double>> RandomPositionBuilder::generatePositionsImpl(do // to compute total number of particles we use the total particle density // and multiply by the area of the layer - int num_particles = static_cast<int>(density * (2 * layer_size) * (2 * layer_size)); + int n_particles = static_cast<int>(density * (2 * layer_size) * (2 * layer_size)); // random generator and distribution std::random_device rd; // Will be used to obtain a seed for the random number engine std::mt19937 gen(rd()); // Standard mersenne_twister_engine seeded with rd() std::uniform_real_distribution<double> dis(0.0, 1.0); - for (int i = 1; i <= num_particles; ++i) { + for (int i = 1; i <= n_particles; ++i) { // generate random x and y coordinates position.push_back(dis(gen) * 2 * layer_size - layer_size); // x position.push_back(dis(gen) * 2 * layer_size - layer_size); // y diff --git a/Param/Distrib/DistributionHandler.cpp b/Param/Distrib/DistributionHandler.cpp index cd324cf4dd4b07c6d6129121559829a73f478781..46d207b890e7a1a0d722c75a8736595f18a26224 100644 --- a/Param/Distrib/DistributionHandler.cpp +++ b/Param/Distrib/DistributionHandler.cpp @@ -19,7 +19,7 @@ #include "Param/Distrib/ParameterSample.h" DistributionHandler::DistributionHandler() - : m_nbr_combinations(1) + : m_n_combinations(1) { } @@ -29,19 +29,19 @@ void DistributionHandler::addParameterDistribution(const ParameterDistribution& { if (par_distr.nDraws() > 0) { m_distributions.push_back(par_distr); - m_nbr_combinations *= par_distr.nDraws(); + m_n_combinations *= par_distr.nDraws(); m_cached_samples.push_back(par_distr.generateSamples()); } } size_t DistributionHandler::getTotalNumberOfSamples() const { - return m_nbr_combinations; + return m_n_combinations; } double DistributionHandler::setParameterValues(size_t index) { - ASSERT(index < m_nbr_combinations); + ASSERT(index < m_n_combinations); size_t n_distr = m_distributions.size(); double weight = 1.0; diff --git a/Param/Distrib/DistributionHandler.h b/Param/Distrib/DistributionHandler.h index 23ab73b850eaca2fc0f275537f396f0948fc41d3..f06ffe1b251f3e29674579ae1d8dd02084020bfb 100644 --- a/Param/Distrib/DistributionHandler.h +++ b/Param/Distrib/DistributionHandler.h @@ -48,7 +48,7 @@ public: std::function<void(double)> fn); private: - size_t m_nbr_combinations; + size_t m_n_combinations; std::vector<ParameterDistribution> m_distributions; std::map<const ParameterDistribution*, std::function<void(double)>> m_setValueFunctions; std::vector<std::vector<ParameterSample>> m_cached_samples; diff --git a/Param/Distrib/Distributions.cpp b/Param/Distrib/Distributions.cpp index 5871dd0ef7e71c7580223a4fe8b6ae631b8fb7ec..b6ed6a9dc3d5e9b80ffb094901a45c09378c7687 100644 --- a/Param/Distrib/Distributions.cpp +++ b/Param/Distrib/Distributions.cpp @@ -48,41 +48,41 @@ IDistribution1D::IDistribution1D(const std::vector<double>& PValues) //! Returns equidistant samples, using intrinsic parameters, weighted with probabilityDensity(). -std::vector<ParameterSample> IDistribution1D::equidistantSamples(size_t nbr_samples, +std::vector<ParameterSample> IDistribution1D::equidistantSamples(size_t n_samples, double sigma_factor, const RealLimits& limits) const { - if (nbr_samples == 0) + if (n_samples == 0) throw std::runtime_error("IDistribution1D::generateSamples: " "number of generated samples must be bigger than zero"); if (isDelta()) return {ParameterSample(mean())}; - return generateSamplesFromValues(equidistantPoints(nbr_samples, sigma_factor, limits)); + return generateSamplesFromValues(equidistantPoints(n_samples, sigma_factor, limits)); } //! Returns equidistant samples from xmin to xmax, weighted with probabilityDensity(). std::vector<ParameterSample> -IDistribution1D::equidistantSamplesInRange(size_t nbr_samples, double xmin, double xmax) const +IDistribution1D::equidistantSamplesInRange(size_t n_samples, double xmin, double xmax) const { - if (nbr_samples == 0) + if (n_samples == 0) throw std::runtime_error("IDistribution1D::generateSamples: " "number of generated samples must be bigger than zero"); if (isDelta()) return {ParameterSample(mean())}; - return generateSamplesFromValues(equidistantPointsInRange(nbr_samples, xmin, xmax)); + return generateSamplesFromValues(equidistantPointsInRange(n_samples, xmin, xmax)); } //! Returns equidistant interpolation points from xmin to xmax. -std::vector<double> IDistribution1D::equidistantPointsInRange(size_t nbr_samples, double xmin, +std::vector<double> IDistribution1D::equidistantPointsInRange(size_t n_samples, double xmin, double xmax) const { - if (nbr_samples < 2 || DoubleEqual(xmin, xmax)) + if (n_samples < 2 || DoubleEqual(xmin, xmax)) return {mean()}; - std::vector<double> result(nbr_samples); - for (size_t i = 0; i < nbr_samples; ++i) - result[i] = xmin + i * (xmax - xmin) / (nbr_samples - 1.0); + std::vector<double> result(n_samples); + for (size_t i = 0; i < n_samples; ++i) + result[i] = xmin + i * (xmax - xmin) / (n_samples - 1.0); return result; } @@ -152,13 +152,13 @@ double DistributionGate::probabilityDensity(double x) const return 1.0 / (m_max - m_min); } -std::vector<double> DistributionGate::equidistantPoints(size_t nbr_samples, double /*sigma_factor*/, +std::vector<double> DistributionGate::equidistantPoints(size_t n_samples, double /*sigma_factor*/, const RealLimits& limits) const { double xmin = m_min; double xmax = m_max; adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionGate::isDelta() const @@ -209,7 +209,7 @@ double DistributionLorentz::probabilityDensity(double x) const return m_hwhm / (m_hwhm * m_hwhm + (x - m_mean) * (x - m_mean)) / M_PI; } -std::vector<double> DistributionLorentz::equidistantPoints(size_t nbr_samples, double sigma_factor, +std::vector<double> DistributionLorentz::equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits) const { ASSERT(m_validated); @@ -218,7 +218,7 @@ std::vector<double> DistributionLorentz::equidistantPoints(size_t nbr_samples, d double xmin = m_mean - sigma_factor * m_hwhm; double xmax = m_mean + sigma_factor * m_hwhm; adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionLorentz::isDelta() const @@ -275,7 +275,7 @@ double DistributionGaussian::probabilityDensity(double x) const return exponential / m_std_dev / std::sqrt(M_TWOPI); } -std::vector<double> DistributionGaussian::equidistantPoints(size_t nbr_samples, double sigma_factor, +std::vector<double> DistributionGaussian::equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits) const { ASSERT(m_validated); @@ -284,7 +284,7 @@ std::vector<double> DistributionGaussian::equidistantPoints(size_t nbr_samples, double xmin = m_mean - sigma_factor * m_std_dev; double xmax = m_mean + sigma_factor * m_std_dev; adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionGaussian::isDelta() const @@ -340,12 +340,12 @@ double DistributionLogNormal::mean() const return m_median * std::exp(exponent); } -std::vector<double> DistributionLogNormal::equidistantPoints(size_t nbr_samples, +std::vector<double> DistributionLogNormal::equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits) const { ASSERT(m_validated); - if (nbr_samples < 2) { + if (n_samples < 2) { std::vector<double> result; result.push_back(m_median); return result; @@ -355,7 +355,7 @@ std::vector<double> DistributionLogNormal::equidistantPoints(size_t nbr_samples, double xmin = m_median * std::exp(-sigma_factor * m_scale_param); double xmax = m_median * std::exp(sigma_factor * m_scale_param); adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionLogNormal::isDelta() const @@ -412,7 +412,7 @@ double DistributionCosine::probabilityDensity(double x) const return (1.0 + std::cos((x - m_mean) / m_sigma)) / (m_sigma * M_TWOPI); } -std::vector<double> DistributionCosine::equidistantPoints(size_t nbr_samples, double sigma_factor, +std::vector<double> DistributionCosine::equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits) const { ASSERT(m_validated); @@ -421,7 +421,7 @@ std::vector<double> DistributionCosine::equidistantPoints(size_t nbr_samples, do double xmin = m_mean - sigma_factor * m_sigma * M_PI_2; double xmax = m_mean + sigma_factor * m_sigma * M_PI_2; adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionCosine::isDelta() const @@ -491,15 +491,15 @@ double DistributionTrapezoid::probabilityDensity(double x) const return 0.0; } -std::vector<double> DistributionTrapezoid::equidistantPoints(size_t nbr_samples, double, +std::vector<double> DistributionTrapezoid::equidistantPoints(size_t n_samples, double, const RealLimits& limits) const { ASSERT(m_validated); double xmin = m_center - m_middle / 2.0 - m_left; double xmax = xmin + m_left + m_middle + m_right; - adjustLimitsToNonZeroSamples(xmin, xmax, nbr_samples); + adjustLimitsToNonZeroSamples(xmin, xmax, n_samples); adjustMinMaxForLimits(xmin, xmax, limits); - return equidistantPointsInRange(nbr_samples, xmin, xmax); + return equidistantPointsInRange(n_samples, xmin, xmax); } bool DistributionTrapezoid::isDelta() const @@ -514,16 +514,16 @@ std::string DistributionTrapezoid::pythonConstructor(const std::string& units) c } void DistributionTrapezoid::adjustLimitsToNonZeroSamples(double& min, double& max, - size_t nbr_samples) const + size_t n_samples) const { - if (nbr_samples <= 1) + if (n_samples <= 1) return; - size_t N = nbr_samples; + size_t N = n_samples; if (m_left > 0.0) ++N; if (m_right > 0.0) ++N; - if (N == nbr_samples) + if (N == n_samples) return; double step = (max - min) / (N - 1); if (m_left > 0.0) diff --git a/Param/Distrib/Distributions.h b/Param/Distrib/Distributions.h index 8414da5afe0765982456237e04144ca0222930c0..158ba5f99b351b6b230e7657506f545603572a30 100644 --- a/Param/Distrib/Distributions.h +++ b/Param/Distrib/Distributions.h @@ -42,20 +42,20 @@ public: virtual double mean() const = 0; //! Returns equidistant samples, using intrinsic parameters, weighted with probabilityDensity(). - std::vector<ParameterSample> equidistantSamples(size_t nbr_samples, double sigma_factor = 0., + std::vector<ParameterSample> equidistantSamples(size_t n_samples, double sigma_factor = 0., const RealLimits& limits = {}) const; //! Returns equidistant samples from xmin to xmax, weighted with probabilityDensity(). - std::vector<ParameterSample> equidistantSamplesInRange(size_t nbr_samples, double xmin, + std::vector<ParameterSample> equidistantSamplesInRange(size_t n_samples, double xmin, double xmax) const; //! Returns equidistant interpolation points, with range computed in distribution-specific //! way from mean and width parameter, taking into account limits and sigma_factor. - virtual std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + virtual std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const = 0; //! Returns equidistant interpolation points from xmin to xmax. - virtual std::vector<double> equidistantPointsInRange(size_t nbr_samples, double xmin, + virtual std::vector<double> equidistantPointsInRange(size_t n_samples, double xmin, double xmax) const; //! Returns true if the distribution is in the limit case of a Dirac delta distribution. @@ -100,7 +100,7 @@ public: double max() const { return m_max; } //! Returns list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -138,7 +138,7 @@ public: double hwhm() const { return m_hwhm; } //! generate list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -179,7 +179,7 @@ public: double getStdDev() const { return m_std_dev; } //! generate list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -220,7 +220,7 @@ public: double getScalePar() const { return m_scale_param; } //! generate list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -260,7 +260,7 @@ public: double sigma() const { return m_sigma; } //! generate list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -306,7 +306,7 @@ public: double getRightWidth() const { return m_right; } //! generate list of sample values - std::vector<double> equidistantPoints(size_t nbr_samples, double sigma_factor, + std::vector<double> equidistantPoints(size_t n_samples, double sigma_factor, const RealLimits& limits = {}) const override; bool isDelta() const override; @@ -318,7 +318,7 @@ public: std::string validate() const override; private: - void adjustLimitsToNonZeroSamples(double& min, double& max, size_t nbr_samples) const; + void adjustLimitsToNonZeroSamples(double& min, double& max, size_t n_samples) const; const double& m_center; const double& m_left; const double& m_middle; diff --git a/Param/Distrib/ParameterDistribution.cpp b/Param/Distrib/ParameterDistribution.cpp index 741d503ca773257704bfaf8b6946dd959f5a3d3c..eef2678472bd7af35d2c3412f77170e8b85bdefa 100644 --- a/Param/Distrib/ParameterDistribution.cpp +++ b/Param/Distrib/ParameterDistribution.cpp @@ -18,10 +18,10 @@ ParameterDistribution::ParameterDistribution(WhichParameter whichParameter, const IDistribution1D& distribution, - size_t nbr_samples, double sigma_factor, + size_t n_samples, double sigma_factor, const RealLimits& limits) : m_whichParameter(whichParameter) - , m_nbr_samples(nbr_samples) + , m_n_samples(n_samples) , m_sigma_factor(sigma_factor) , m_limits(limits) , m_xmin(1.0) @@ -31,16 +31,16 @@ ParameterDistribution::ParameterDistribution(WhichParameter whichParameter, if (m_sigma_factor < 0.0) throw std::runtime_error("ParameterDistribution::ParameterDistribution() -> Error." "sigma factor cannot be negative"); - if (nbr_samples == 0) + if (n_samples == 0) throw std::runtime_error("ParameterDistribution::ParameterDistribution() -> Error." "Number of samples cannot be zero."); } ParameterDistribution::ParameterDistribution(WhichParameter whichParameter, const IDistribution1D& distribution, - size_t nbr_samples, double xmin, double xmax) + size_t n_samples, double xmin, double xmax) : m_whichParameter(whichParameter) - , m_nbr_samples(nbr_samples) + , m_n_samples(n_samples) , m_sigma_factor(0.0) , m_xmin(xmin) , m_xmax(xmax) @@ -49,7 +49,7 @@ ParameterDistribution::ParameterDistribution(WhichParameter whichParameter, if (m_sigma_factor < 0.0) throw std::runtime_error("ParameterDistribution::ParameterDistribution() -> Error." "sigma factor cannot be negative"); - if (nbr_samples == 0) + if (n_samples == 0) throw std::runtime_error("ParameterDistribution::ParameterDistribution() -> Error." "Number of samples cannot be zero."); if (xmin >= xmax) @@ -59,7 +59,7 @@ ParameterDistribution::ParameterDistribution(WhichParameter whichParameter, ParameterDistribution::ParameterDistribution(const ParameterDistribution& other) : m_whichParameter(other.m_whichParameter) - , m_nbr_samples(other.m_nbr_samples) + , m_n_samples(other.m_n_samples) , m_sigma_factor(other.m_sigma_factor) , m_limits(other.m_limits) , m_xmin(other.m_xmin) @@ -74,7 +74,7 @@ ParameterDistribution& ParameterDistribution::operator=(const ParameterDistribut { if (this != &other) { this->m_whichParameter = other.m_whichParameter; - m_nbr_samples = other.m_nbr_samples; + m_n_samples = other.m_n_samples; m_sigma_factor = other.m_sigma_factor; m_distribution.reset(other.m_distribution->clone()); m_limits = other.m_limits; @@ -107,14 +107,14 @@ size_t ParameterDistribution::nDraws() const { if (m_distribution && m_distribution->isDelta()) return 1; - return m_nbr_samples; + return m_n_samples; } std::vector<ParameterSample> ParameterDistribution::generateSamples() const { if (m_xmin < m_xmax) - return m_distribution->equidistantSamplesInRange(m_nbr_samples, m_xmin, m_xmax); - return m_distribution->equidistantSamples(m_nbr_samples, m_sigma_factor, m_limits); + return m_distribution->equidistantSamplesInRange(m_n_samples, m_xmin, m_xmax); + return m_distribution->equidistantSamples(m_n_samples, m_sigma_factor, m_limits); } const IDistribution1D* ParameterDistribution::getDistribution() const diff --git a/Param/Distrib/ParameterDistribution.h b/Param/Distrib/ParameterDistribution.h index 2e24d6d2c8072e91312eb58bbd322ab11915b0c0..b166e04505902c4b9e66199d860ec70e53d1ce46 100644 --- a/Param/Distrib/ParameterDistribution.h +++ b/Param/Distrib/ParameterDistribution.h @@ -34,11 +34,11 @@ public: }; ParameterDistribution(WhichParameter whichParameter, const IDistribution1D& distribution, - size_t nbr_samples, double sigma_factor = 0.0, + size_t n_samples, double sigma_factor = 0.0, const RealLimits& limits = RealLimits()); ParameterDistribution(WhichParameter whichParameter, const IDistribution1D& distribution, - size_t nbr_samples, double xmin, double xmax); + size_t n_samples, double xmin, double xmax); ParameterDistribution(const ParameterDistribution& other); @@ -70,7 +70,7 @@ public: private: WhichParameter m_whichParameter; std::unique_ptr<IDistribution1D> m_distribution; - size_t m_nbr_samples; + size_t m_n_samples; double m_sigma_factor; RealLimits m_limits; double m_xmin; diff --git a/Sim/Simulation/ISimulation.cpp b/Sim/Simulation/ISimulation.cpp index 7debf25e21550a83518b12efb74000343ad44e5b..f049a0539d9f84193c143e7a79826928bf2be2b1 100644 --- a/Sim/Simulation/ISimulation.cpp +++ b/Sim/Simulation/ISimulation.cpp @@ -179,10 +179,10 @@ std::string ISimulation::unitOfParameter(ParameterDistribution::WhichParameter w } void ISimulation::addParameterDistribution(ParameterDistribution::WhichParameter whichParameter, - const IDistribution1D& distribution, size_t nbr_samples, + const IDistribution1D& distribution, size_t n_samples, double sigma_factor, const RealLimits& limits) { - ParameterDistribution par_distr(whichParameter, distribution, nbr_samples, sigma_factor, + ParameterDistribution par_distr(whichParameter, distribution, n_samples, sigma_factor, limits); addParameterDistribution(par_distr); } diff --git a/Sim/Simulation/ISimulation.h b/Sim/Simulation/ISimulation.h index ae51655eaf699c41a62800f45eb073edfe75d56e..ba36f2d95f0f24119faf862c86c394550a5adc43 100644 --- a/Sim/Simulation/ISimulation.h +++ b/Sim/Simulation/ISimulation.h @@ -54,7 +54,7 @@ public: void setBackground(const IBackground& bg); void addParameterDistribution(ParameterDistribution::WhichParameter whichParameter, - const IDistribution1D& distribution, size_t nbr_samples, + const IDistribution1D& distribution, size_t n_samples, double sigma_factor = 0.0, const RealLimits& limits = RealLimits()); void addParameterDistribution(const ParameterDistribution& par_distr); diff --git a/Tests/Unit/Param/DistributionsTest.cpp b/Tests/Unit/Param/DistributionsTest.cpp index c0ad96fe4c84728240cae189c62913f3b1339b49..207b99b5f7bd63472280ce34e971f76ec60fcf29 100644 --- a/Tests/Unit/Param/DistributionsTest.cpp +++ b/Tests/Unit/Param/DistributionsTest.cpp @@ -123,13 +123,13 @@ TEST(DistributionsTest, DistributionLorentzSamples) { DistributionLorentz distr(1.0, 0.1); - const int nbr_samples(3); + const int n_samples(3); // with sigma factor const double sigma_factor(2.0); - std::vector<ParameterSample> samples = distr.equidistantSamples(nbr_samples, sigma_factor); + std::vector<ParameterSample> samples = distr.equidistantSamples(n_samples, sigma_factor); - EXPECT_EQ(samples.size(), size_t(nbr_samples)); + EXPECT_EQ(samples.size(), size_t(n_samples)); EXPECT_EQ(samples[0].value, 1.0 - sigma_factor * 0.1); EXPECT_EQ(samples[1].value, 1.0); EXPECT_EQ(samples[2].value, 1.0 + sigma_factor * 0.1); @@ -141,13 +141,13 @@ TEST(DistributionsTest, DistributionLorentzSamples) EXPECT_EQ(samples[2].weight, d3 / (d1 + d2 + d3)); // with Limits - samples = distr.equidistantSamples(nbr_samples, sigma_factor, RealLimits::lowerLimited(0.99)); + samples = distr.equidistantSamples(n_samples, sigma_factor, RealLimits::lowerLimited(0.99)); EXPECT_EQ(samples[0].value, 0.99); EXPECT_EQ(samples[1].value, samples[0].value + (samples[2].value - samples[0].value) / 2.0); EXPECT_EQ(samples[2].value, 1.0 + sigma_factor * 0.1); // with xmin, xmax - samples = distr.equidistantSamplesInRange(nbr_samples, 0.8, 1.2); + samples = distr.equidistantSamplesInRange(n_samples, 0.8, 1.2); EXPECT_EQ(samples[0].value, 0.8); EXPECT_EQ(samples[1].value, 1.0); EXPECT_EQ(samples[2].value, 1.2); diff --git a/Tests/Unit/Param/ParameterDistributionTest.cpp b/Tests/Unit/Param/ParameterDistributionTest.cpp index 49d55d8860359d7e334659798a1c9946abcb4e2b..f1b7acfcfc9ca92eaff1f2f71d6450a59257f08d 100644 --- a/Tests/Unit/Param/ParameterDistributionTest.cpp +++ b/Tests/Unit/Param/ParameterDistributionTest.cpp @@ -83,11 +83,11 @@ TEST(ParameterDistributionTest, GenerateSamples) DistributionGaussian distribution(mean, sigma); std::string name = "MainParameterName"; - const int nbr_samples(3); + const int n_samples(3); const double sigma_factor(2.0); // without Limits - ParameterDistribution pardistr(name, distribution, nbr_samples, sigma_factor); + ParameterDistribution pardistr(name, distribution, n_samples, sigma_factor); std::vector<ParameterSample> sample_values = pardistr.generateSamples(); EXPECT_EQ(sample_values.size(), size_t(3)); EXPECT_EQ(sample_values[0].value, mean - sigma_factor * sigma); @@ -95,7 +95,7 @@ TEST(ParameterDistributionTest, GenerateSamples) EXPECT_EQ(sample_values[2].value, mean + sigma_factor * sigma); // with Limits - ParameterDistribution pardistr2(name, distribution, nbr_samples, sigma_factor, + ParameterDistribution pardistr2(name, distribution, n_samples, sigma_factor, RealLimits::lowerLimited(mean)); sample_values = pardistr2.generateSamples(); EXPECT_EQ(sample_values.size(), size_t(3)); @@ -106,7 +106,7 @@ TEST(ParameterDistributionTest, GenerateSamples) // with xmin, xmax defined double xmin(-1.0); double xmax(2.0); - ParameterDistribution pardistr3(name, distribution, nbr_samples, xmin, xmax); + ParameterDistribution pardistr3(name, distribution, n_samples, xmin, xmax); sample_values = pardistr3.generateSamples(); EXPECT_EQ(sample_values.size(), size_t(3)); EXPECT_EQ(sample_values[0].value, xmin); diff --git a/auto/Wrap/libBornAgainParam.py b/auto/Wrap/libBornAgainParam.py index 771a8666d95db7584cf71b5dc41c1ae343081123..ba4ca1de799e53f54da075ab5de88c2f715b04a8 100644 --- a/auto/Wrap/libBornAgainParam.py +++ b/auto/Wrap/libBornAgainParam.py @@ -2085,20 +2085,20 @@ class IDistribution1D(libBornAgainBase.ICloneable, INode): return _libBornAgainParam.IDistribution1D_mean(self) def equidistantSamples(self, *args): - r"""equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits const & limits={}) -> std::vector< ParameterSample,std::allocator< ParameterSample > >""" + r"""equidistantSamples(IDistribution1D self, size_t n_samples, double sigma_factor=0., RealLimits const & limits={}) -> std::vector< ParameterSample,std::allocator< ParameterSample > >""" return _libBornAgainParam.IDistribution1D_equidistantSamples(self, *args) - def equidistantSamplesInRange(self, nbr_samples, xmin, xmax): - r"""equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> std::vector< ParameterSample,std::allocator< ParameterSample > >""" - return _libBornAgainParam.IDistribution1D_equidistantSamplesInRange(self, nbr_samples, xmin, xmax) + def equidistantSamplesInRange(self, n_samples, xmin, xmax): + r"""equidistantSamplesInRange(IDistribution1D self, size_t n_samples, double xmin, double xmax) -> std::vector< ParameterSample,std::allocator< ParameterSample > >""" + return _libBornAgainParam.IDistribution1D_equidistantSamplesInRange(self, n_samples, xmin, xmax) def equidistantPoints(self, *args): - r"""equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(IDistribution1D self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.IDistribution1D_equidistantPoints(self, *args) - def equidistantPointsInRange(self, nbr_samples, xmin, xmax): - r"""equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t""" - return _libBornAgainParam.IDistribution1D_equidistantPointsInRange(self, nbr_samples, xmin, xmax) + def equidistantPointsInRange(self, n_samples, xmin, xmax): + r"""equidistantPointsInRange(IDistribution1D self, size_t n_samples, double xmin, double xmax) -> vdouble1d_t""" + return _libBornAgainParam.IDistribution1D_equidistantPointsInRange(self, n_samples, xmin, xmax) def isDelta(self): r"""isDelta(IDistribution1D self) -> bool""" @@ -2150,7 +2150,7 @@ class DistributionGate(IDistribution1D): return _libBornAgainParam.DistributionGate_max(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionGate self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionGate_equidistantPoints(self, *args) def isDelta(self): @@ -2203,7 +2203,7 @@ class DistributionLorentz(IDistribution1D): return _libBornAgainParam.DistributionLorentz_hwhm(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionLorentz self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionLorentz_equidistantPoints(self, *args) def isDelta(self): @@ -2256,7 +2256,7 @@ class DistributionGaussian(IDistribution1D): return _libBornAgainParam.DistributionGaussian_getStdDev(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionGaussian self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionGaussian_equidistantPoints(self, *args) def isDelta(self): @@ -2312,7 +2312,7 @@ class DistributionLogNormal(IDistribution1D): return _libBornAgainParam.DistributionLogNormal_getScalePar(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionLogNormal self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionLogNormal_equidistantPoints(self, *args) def isDelta(self): @@ -2365,7 +2365,7 @@ class DistributionCosine(IDistribution1D): return _libBornAgainParam.DistributionCosine_sigma(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionCosine self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionCosine_equidistantPoints(self, *args) def isDelta(self): @@ -2426,7 +2426,7 @@ class DistributionTrapezoid(IDistribution1D): return _libBornAgainParam.DistributionTrapezoid_getRightWidth(self) def equidistantPoints(self, *args): - r"""equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" + r"""equidistantPoints(DistributionTrapezoid self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t""" return _libBornAgainParam.DistributionTrapezoid_equidistantPoints(self, *args) def isDelta(self): @@ -2456,8 +2456,8 @@ class ParameterDistribution(object): def __init__(self, *args): r""" - __init__(ParameterDistribution self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits()) -> ParameterDistribution - __init__(ParameterDistribution self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax) -> ParameterDistribution + __init__(ParameterDistribution self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t n_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits()) -> ParameterDistribution + __init__(ParameterDistribution self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t n_samples, double xmin, double xmax) -> ParameterDistribution __init__(ParameterDistribution self, ParameterDistribution other) -> ParameterDistribution """ _libBornAgainParam.ParameterDistribution_swiginit(self, _libBornAgainParam.new_ParameterDistribution(*args)) diff --git a/auto/Wrap/libBornAgainParam_wrap.cpp b/auto/Wrap/libBornAgainParam_wrap.cpp index 57b017853b1e41055f5a406762af33ee571354cc..a7b2dc7535ec332fafb9283c9cb95d2214ee54fa 100644 --- a/auto/Wrap/libBornAgainParam_wrap.cpp +++ b/auto/Wrap/libBornAgainParam_wrap.cpp @@ -34871,10 +34871,10 @@ static PyMethodDef SwigMethods[] = { { "IDistribution1D_clone", _wrap_IDistribution1D_clone, METH_O, "IDistribution1D_clone(IDistribution1D self) -> IDistribution1D"}, { "IDistribution1D_probabilityDensity", _wrap_IDistribution1D_probabilityDensity, METH_VARARGS, "IDistribution1D_probabilityDensity(IDistribution1D self, double x) -> double"}, { "IDistribution1D_mean", _wrap_IDistribution1D_mean, METH_O, "IDistribution1D_mean(IDistribution1D self) -> double"}, - { "IDistribution1D_equidistantSamples", _wrap_IDistribution1D_equidistantSamples, METH_VARARGS, "IDistribution1D_equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits const & limits={}) -> std::vector< ParameterSample,std::allocator< ParameterSample > >"}, - { "IDistribution1D_equidistantSamplesInRange", _wrap_IDistribution1D_equidistantSamplesInRange, METH_VARARGS, "IDistribution1D_equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> std::vector< ParameterSample,std::allocator< ParameterSample > >"}, - { "IDistribution1D_equidistantPoints", _wrap_IDistribution1D_equidistantPoints, METH_VARARGS, "IDistribution1D_equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, - { "IDistribution1D_equidistantPointsInRange", _wrap_IDistribution1D_equidistantPointsInRange, METH_VARARGS, "IDistribution1D_equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t"}, + { "IDistribution1D_equidistantSamples", _wrap_IDistribution1D_equidistantSamples, METH_VARARGS, "IDistribution1D_equidistantSamples(IDistribution1D self, size_t n_samples, double sigma_factor=0., RealLimits const & limits={}) -> std::vector< ParameterSample,std::allocator< ParameterSample > >"}, + { "IDistribution1D_equidistantSamplesInRange", _wrap_IDistribution1D_equidistantSamplesInRange, METH_VARARGS, "IDistribution1D_equidistantSamplesInRange(IDistribution1D self, size_t n_samples, double xmin, double xmax) -> std::vector< ParameterSample,std::allocator< ParameterSample > >"}, + { "IDistribution1D_equidistantPoints", _wrap_IDistribution1D_equidistantPoints, METH_VARARGS, "IDistribution1D_equidistantPoints(IDistribution1D self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "IDistribution1D_equidistantPointsInRange", _wrap_IDistribution1D_equidistantPointsInRange, METH_VARARGS, "IDistribution1D_equidistantPointsInRange(IDistribution1D self, size_t n_samples, double xmin, double xmax) -> vdouble1d_t"}, { "IDistribution1D_isDelta", _wrap_IDistribution1D_isDelta, METH_O, "IDistribution1D_isDelta(IDistribution1D self) -> bool"}, { "delete_IDistribution1D", _wrap_delete_IDistribution1D, METH_O, "delete_IDistribution1D(IDistribution1D self)"}, { "IDistribution1D_swigregister", IDistribution1D_swigregister, METH_O, NULL}, @@ -34890,7 +34890,7 @@ static PyMethodDef SwigMethods[] = { { "DistributionGate_mean", _wrap_DistributionGate_mean, METH_O, "DistributionGate_mean(DistributionGate self) -> double"}, { "DistributionGate_min", _wrap_DistributionGate_min, METH_O, "DistributionGate_min(DistributionGate self) -> double"}, { "DistributionGate_max", _wrap_DistributionGate_max, METH_O, "DistributionGate_max(DistributionGate self) -> double"}, - { "DistributionGate_equidistantPoints", _wrap_DistributionGate_equidistantPoints, METH_VARARGS, "DistributionGate_equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionGate_equidistantPoints", _wrap_DistributionGate_equidistantPoints, METH_VARARGS, "DistributionGate_equidistantPoints(DistributionGate self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionGate_isDelta", _wrap_DistributionGate_isDelta, METH_O, "DistributionGate_isDelta(DistributionGate self) -> bool"}, { "DistributionGate_validate", _wrap_DistributionGate_validate, METH_O, "DistributionGate_validate(DistributionGate self) -> std::string"}, { "delete_DistributionGate", _wrap_delete_DistributionGate, METH_O, "delete_DistributionGate(DistributionGate self)"}, @@ -34907,7 +34907,7 @@ static PyMethodDef SwigMethods[] = { { "DistributionLorentz_probabilityDensity", _wrap_DistributionLorentz_probabilityDensity, METH_VARARGS, "DistributionLorentz_probabilityDensity(DistributionLorentz self, double x) -> double"}, { "DistributionLorentz_mean", _wrap_DistributionLorentz_mean, METH_O, "DistributionLorentz_mean(DistributionLorentz self) -> double"}, { "DistributionLorentz_hwhm", _wrap_DistributionLorentz_hwhm, METH_O, "DistributionLorentz_hwhm(DistributionLorentz self) -> double"}, - { "DistributionLorentz_equidistantPoints", _wrap_DistributionLorentz_equidistantPoints, METH_VARARGS, "DistributionLorentz_equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionLorentz_equidistantPoints", _wrap_DistributionLorentz_equidistantPoints, METH_VARARGS, "DistributionLorentz_equidistantPoints(DistributionLorentz self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionLorentz_isDelta", _wrap_DistributionLorentz_isDelta, METH_O, "DistributionLorentz_isDelta(DistributionLorentz self) -> bool"}, { "DistributionLorentz_validate", _wrap_DistributionLorentz_validate, METH_O, "DistributionLorentz_validate(DistributionLorentz self) -> std::string"}, { "delete_DistributionLorentz", _wrap_delete_DistributionLorentz, METH_O, "delete_DistributionLorentz(DistributionLorentz self)"}, @@ -34924,7 +34924,7 @@ static PyMethodDef SwigMethods[] = { { "DistributionGaussian_probabilityDensity", _wrap_DistributionGaussian_probabilityDensity, METH_VARARGS, "DistributionGaussian_probabilityDensity(DistributionGaussian self, double x) -> double"}, { "DistributionGaussian_mean", _wrap_DistributionGaussian_mean, METH_O, "DistributionGaussian_mean(DistributionGaussian self) -> double"}, { "DistributionGaussian_getStdDev", _wrap_DistributionGaussian_getStdDev, METH_O, "DistributionGaussian_getStdDev(DistributionGaussian self) -> double"}, - { "DistributionGaussian_equidistantPoints", _wrap_DistributionGaussian_equidistantPoints, METH_VARARGS, "DistributionGaussian_equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionGaussian_equidistantPoints", _wrap_DistributionGaussian_equidistantPoints, METH_VARARGS, "DistributionGaussian_equidistantPoints(DistributionGaussian self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionGaussian_isDelta", _wrap_DistributionGaussian_isDelta, METH_O, "DistributionGaussian_isDelta(DistributionGaussian self) -> bool"}, { "DistributionGaussian_validate", _wrap_DistributionGaussian_validate, METH_O, "DistributionGaussian_validate(DistributionGaussian self) -> std::string"}, { "delete_DistributionGaussian", _wrap_delete_DistributionGaussian, METH_O, "delete_DistributionGaussian(DistributionGaussian self)"}, @@ -34941,7 +34941,7 @@ static PyMethodDef SwigMethods[] = { { "DistributionLogNormal_mean", _wrap_DistributionLogNormal_mean, METH_O, "DistributionLogNormal_mean(DistributionLogNormal self) -> double"}, { "DistributionLogNormal_getMedian", _wrap_DistributionLogNormal_getMedian, METH_O, "DistributionLogNormal_getMedian(DistributionLogNormal self) -> double"}, { "DistributionLogNormal_getScalePar", _wrap_DistributionLogNormal_getScalePar, METH_O, "DistributionLogNormal_getScalePar(DistributionLogNormal self) -> double"}, - { "DistributionLogNormal_equidistantPoints", _wrap_DistributionLogNormal_equidistantPoints, METH_VARARGS, "DistributionLogNormal_equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionLogNormal_equidistantPoints", _wrap_DistributionLogNormal_equidistantPoints, METH_VARARGS, "DistributionLogNormal_equidistantPoints(DistributionLogNormal self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionLogNormal_isDelta", _wrap_DistributionLogNormal_isDelta, METH_O, "DistributionLogNormal_isDelta(DistributionLogNormal self) -> bool"}, { "DistributionLogNormal_validate", _wrap_DistributionLogNormal_validate, METH_O, "DistributionLogNormal_validate(DistributionLogNormal self) -> std::string"}, { "delete_DistributionLogNormal", _wrap_delete_DistributionLogNormal, METH_O, "delete_DistributionLogNormal(DistributionLogNormal self)"}, @@ -34958,7 +34958,7 @@ static PyMethodDef SwigMethods[] = { { "DistributionCosine_probabilityDensity", _wrap_DistributionCosine_probabilityDensity, METH_VARARGS, "DistributionCosine_probabilityDensity(DistributionCosine self, double x) -> double"}, { "DistributionCosine_mean", _wrap_DistributionCosine_mean, METH_O, "DistributionCosine_mean(DistributionCosine self) -> double"}, { "DistributionCosine_sigma", _wrap_DistributionCosine_sigma, METH_O, "DistributionCosine_sigma(DistributionCosine self) -> double"}, - { "DistributionCosine_equidistantPoints", _wrap_DistributionCosine_equidistantPoints, METH_VARARGS, "DistributionCosine_equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionCosine_equidistantPoints", _wrap_DistributionCosine_equidistantPoints, METH_VARARGS, "DistributionCosine_equidistantPoints(DistributionCosine self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionCosine_isDelta", _wrap_DistributionCosine_isDelta, METH_O, "DistributionCosine_isDelta(DistributionCosine self) -> bool"}, { "DistributionCosine_validate", _wrap_DistributionCosine_validate, METH_O, "DistributionCosine_validate(DistributionCosine self) -> std::string"}, { "delete_DistributionCosine", _wrap_delete_DistributionCosine, METH_O, "delete_DistributionCosine(DistributionCosine self)"}, @@ -34977,15 +34977,15 @@ static PyMethodDef SwigMethods[] = { { "DistributionTrapezoid_getLeftWidth", _wrap_DistributionTrapezoid_getLeftWidth, METH_O, "DistributionTrapezoid_getLeftWidth(DistributionTrapezoid self) -> double"}, { "DistributionTrapezoid_getMiddleWidth", _wrap_DistributionTrapezoid_getMiddleWidth, METH_O, "DistributionTrapezoid_getMiddleWidth(DistributionTrapezoid self) -> double"}, { "DistributionTrapezoid_getRightWidth", _wrap_DistributionTrapezoid_getRightWidth, METH_O, "DistributionTrapezoid_getRightWidth(DistributionTrapezoid self) -> double"}, - { "DistributionTrapezoid_equidistantPoints", _wrap_DistributionTrapezoid_equidistantPoints, METH_VARARGS, "DistributionTrapezoid_equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, + { "DistributionTrapezoid_equidistantPoints", _wrap_DistributionTrapezoid_equidistantPoints, METH_VARARGS, "DistributionTrapezoid_equidistantPoints(DistributionTrapezoid self, size_t n_samples, double sigma_factor, RealLimits const & limits={}) -> vdouble1d_t"}, { "DistributionTrapezoid_isDelta", _wrap_DistributionTrapezoid_isDelta, METH_O, "DistributionTrapezoid_isDelta(DistributionTrapezoid self) -> bool"}, { "DistributionTrapezoid_validate", _wrap_DistributionTrapezoid_validate, METH_O, "DistributionTrapezoid_validate(DistributionTrapezoid self) -> std::string"}, { "delete_DistributionTrapezoid", _wrap_delete_DistributionTrapezoid, METH_O, "delete_DistributionTrapezoid(DistributionTrapezoid self)"}, { "DistributionTrapezoid_swigregister", DistributionTrapezoid_swigregister, METH_O, NULL}, { "DistributionTrapezoid_swiginit", DistributionTrapezoid_swiginit, METH_VARARGS, NULL}, { "new_ParameterDistribution", _wrap_new_ParameterDistribution, METH_VARARGS, "\n" - "ParameterDistribution(ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits())\n" - "ParameterDistribution(ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax)\n" + "ParameterDistribution(ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t n_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits())\n" + "ParameterDistribution(ParameterDistribution::WhichParameter whichParameter, IDistribution1D distribution, size_t n_samples, double xmin, double xmax)\n" "new_ParameterDistribution(ParameterDistribution other) -> ParameterDistribution\n" ""}, { "delete_ParameterDistribution", _wrap_delete_ParameterDistribution, METH_O, "delete_ParameterDistribution(ParameterDistribution self)"}, diff --git a/auto/Wrap/libBornAgainSim.py b/auto/Wrap/libBornAgainSim.py index e67dd54f46452fc1a1f4aae1b5f8cbf2445399e0..a269a7b816460c780e282609273da22bc82b555c 100644 --- a/auto/Wrap/libBornAgainSim.py +++ b/auto/Wrap/libBornAgainSim.py @@ -2874,7 +2874,7 @@ class ISimulation(libBornAgainParam.INode): def addParameterDistribution(self, *args): r""" - addParameterDistribution(ISimulation self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D const & distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits()) + addParameterDistribution(ISimulation self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D const & distribution, size_t n_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits()) addParameterDistribution(ISimulation self, ParameterDistribution par_distr) """ return _libBornAgainSim.ISimulation_addParameterDistribution(self, *args) diff --git a/auto/Wrap/libBornAgainSim_wrap.cpp b/auto/Wrap/libBornAgainSim_wrap.cpp index 487cac69f0d2ea7a87ab5b45993f6b1279db8a69..8fab577f96c37f0e2bceda8fee56f0375e74db9f 100644 --- a/auto/Wrap/libBornAgainSim_wrap.cpp +++ b/auto/Wrap/libBornAgainSim_wrap.cpp @@ -39454,7 +39454,7 @@ static PyMethodDef SwigMethods[] = { { "ISimulation_simulate", _wrap_ISimulation_simulate, METH_O, "ISimulation_simulate(ISimulation self) -> SimulationResult"}, { "ISimulation_setBackground", _wrap_ISimulation_setBackground, METH_VARARGS, "ISimulation_setBackground(ISimulation self, IBackground bg)"}, { "ISimulation_addParameterDistribution", _wrap_ISimulation_addParameterDistribution, METH_VARARGS, "\n" - "ISimulation_addParameterDistribution(ISimulation self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D const & distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits())\n" + "ISimulation_addParameterDistribution(ISimulation self, ParameterDistribution::WhichParameter whichParameter, IDistribution1D const & distribution, size_t n_samples, double sigma_factor=0.0, RealLimits const & limits=RealLimits())\n" "ISimulation_addParameterDistribution(ISimulation self, ParameterDistribution par_distr)\n" ""}, { "ISimulation_options", _wrap_ISimulation_options, METH_VARARGS, "\n"