diff --git a/Doc/Ref/PhysRef.pdf b/Doc/Ref/PhysRef.pdf
index 1430fde4e6fc90d58a5e55dbf64e061f5412f467..000d6ff5878016afffdff49b94ffab4f59cda482 100644
Binary files a/Doc/Ref/PhysRef.pdf and b/Doc/Ref/PhysRef.pdf differ
diff --git a/Doc/Ref/Polarized.tex b/Doc/Ref/Polarized.tex
index e4ae8dad2ddc27bbb2efb341f389deb834b15b14..bf53a6cce8d0b6a3b2f7652663107e0f7f9e9c50 100644
--- a/Doc/Ref/Polarized.tex
+++ b/Doc/Ref/Polarized.tex
@@ -38,7 +38,10 @@ in contrast to the scalar theory of the previous chapters.
 \index{Magnetizing field|see{H field}}%
 \index{Magnetic field|see{B field}}%
 
-In presence of a magnetic field,
+In presence of a magnetic field,\footnote
+{According to Ref.~\cite{ZaTT07},
+the magnetic field is usually applied parallel to the sample surface,
+but we do not rely on this.}
 the propagation of free neutrons becomes spin dependent.
 Therefore the scalar wavefunction of \cref{SnScalar}
 must be replaced by the spinor\footnote
@@ -49,7 +52,7 @@ which are less specific as they have many other uses.}%
     \Psi(\r) = \begin{pmatrix} \psi^\up(\r)\\\psi^\dn(\r) \end{pmatrix}.
 \end{equation}
 \index{Spinor}%
-The coupling between the neutron and the magnetic field~$\v{B}$
+The coupling between the neutron and the $\v{B}$~field
 is given by the operator $-\gamma_\text{n}\mu_\text{nucl}\v{B}\Pauli$
 with the neutron gyromagnetic factor $\gamma_\text{n}\simeq-1.91$,
 the nuclear magnetron $\mu_\text{nucl}$,
@@ -71,12 +74,7 @@ becomes
       \Psi(\r) = 0.
 \end{equation}
 \nomenclature[1ψ150 2r040]{$\Psi(\r)$}{Stationary coherent spinor wavefunction}%
-According to Ref.~\cite{ZaTT07},
-the magnetic field is usually applied parallel to the sample surface,
-but we do not rely on this.
-
-We abbreviate the nuclear and the magnetic scattering-length density
-as
+We abbreviate the nuclear and the magnetic scattering-length density as
 \begin{equation}
   \sldN(\r) \coloneqq v_\snuc(\r)\quad\text{and}\quad
   \sldM(\r) \coloneqq \frac{m\mu_\text{n}}{2\pi\hbar^2} B(\r),