diff --git a/Doc/Ref/PhysRef.pdf b/Doc/Ref/PhysRef.pdf index 1430fde4e6fc90d58a5e55dbf64e061f5412f467..000d6ff5878016afffdff49b94ffab4f59cda482 100644 Binary files a/Doc/Ref/PhysRef.pdf and b/Doc/Ref/PhysRef.pdf differ diff --git a/Doc/Ref/Polarized.tex b/Doc/Ref/Polarized.tex index e4ae8dad2ddc27bbb2efb341f389deb834b15b14..bf53a6cce8d0b6a3b2f7652663107e0f7f9e9c50 100644 --- a/Doc/Ref/Polarized.tex +++ b/Doc/Ref/Polarized.tex @@ -38,7 +38,10 @@ in contrast to the scalar theory of the previous chapters. \index{Magnetizing field|see{H field}}% \index{Magnetic field|see{B field}}% -In presence of a magnetic field, +In presence of a magnetic field,\footnote +{According to Ref.~\cite{ZaTT07}, +the magnetic field is usually applied parallel to the sample surface, +but we do not rely on this.} the propagation of free neutrons becomes spin dependent. Therefore the scalar wavefunction of \cref{SnScalar} must be replaced by the spinor\footnote @@ -49,7 +52,7 @@ which are less specific as they have many other uses.}% \Psi(\r) = \begin{pmatrix} \psi^\up(\r)\\\psi^\dn(\r) \end{pmatrix}. \end{equation} \index{Spinor}% -The coupling between the neutron and the magnetic field~$\v{B}$ +The coupling between the neutron and the $\v{B}$~field is given by the operator $-\gamma_\text{n}\mu_\text{nucl}\v{B}\Pauli$ with the neutron gyromagnetic factor $\gamma_\text{n}\simeq-1.91$, the nuclear magnetron $\mu_\text{nucl}$, @@ -71,12 +74,7 @@ becomes \Psi(\r) = 0. \end{equation} \nomenclature[1ψ150 2r040]{$\Psi(\r)$}{Stationary coherent spinor wavefunction}% -According to Ref.~\cite{ZaTT07}, -the magnetic field is usually applied parallel to the sample surface, -but we do not rely on this. - -We abbreviate the nuclear and the magnetic scattering-length density -as +We abbreviate the nuclear and the magnetic scattering-length density as \begin{equation} \sldN(\r) \coloneqq v_\snuc(\r)\quad\text{and}\quad \sldM(\r) \coloneqq \frac{m\mu_\text{n}}{2\pi\hbar^2} B(\r),