diff --git a/Tests/Examples/CMakeLists.txt b/Tests/Examples/CMakeLists.txt
index cc446e152265b5ec6bf06e3fd1aa2fd7cc0aef20..d2dcec2fed3bac306b9afbc3a202dc7e34471475 100644
--- a/Tests/Examples/CMakeLists.txt
+++ b/Tests/Examples/CMakeLists.txt
@@ -196,7 +196,6 @@ test_example(varia/TransmissionVsAlpha 2e-10)
 test_example(varia/TransmissionVsDepth 2e-10)
 test_example(varia/TransmittedModulus 2e-10)
 test_example(varia/Resonator 2e-10)
-# TODO disabled while refactoring scales&coords: test_example(varia/AccessingSimulationResults 2e-10)
 run_example(varia/MaterialProfile)
 run_example(varia/MaterialProfileWithParticles)
 
diff --git a/auto/Examples/varia/AccessingSimulationResults.py b/auto/Examples/varia/AccessingSimulationResults.py
deleted file mode 100755
index 48704d03db6acd2172d06f2183ec1ef4ca01ae95..0000000000000000000000000000000000000000
--- a/auto/Examples/varia/AccessingSimulationResults.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#!/usr/bin/env python3
-"""
-Extended example for simulation results treatment (cropping, slicing, exporting)
-"""
-import math
-import random
-import bornagain as ba
-from bornagain import angstrom, ba_plot as bp, deg, nm, std_samples
-from matplotlib import pyplot as plt
-import datetime
-
-def get_sample():
-    return std_samples.cylinders()
-
-
-def get_simulation(sample):
-    """
-    A GISAXS simulation with beam and detector defined.
-    """
-    beam = ba.Beam(1e5, 1*angstrom, 0.2*deg)
-    n = 200
-    det = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
-    simulation = ba.ScatteringSimulation(beam, sample, det)
-    return simulation
-
-
-def get_noisy_image(field):
-    """
-    Returns clone of input field filled with additional noise
-    """
-    result = field.clone()
-    noise_factor = 2.0
-    for i in range(0, result.size()):
-        amplitude = field.valAt(i)
-        sigma = noise_factor*math.sqrt(amplitude)
-        noisy_amplitude = random.gauss(amplitude, sigma)
-        result.setAt(i, noisy_amplitude)
-    return result
-
-
-def plot_histogram(field, **kwargs):
-    bp.plot_histogram(field,
-                      xlabel=r'$\varphi_f ^{\circ}$',
-                      ylabel=r'$\alpha_{\rm f} ^{\circ}$',
-                      zlabel="",
-                      **kwargs)
-
-
-def plot_slices(noisy):
-    """
-    Plot 1D slices along y-axis at certain x-axis values.
-    """
-    plt.yscale('log')
-
-    # projection along Y, slice at fixed x-value
-    proj1 = noisy.yProjection(0)
-    plt.plot(proj1.axis(0).binCenters(),
-             proj1.flatVector(),
-             label=r'$\varphi=0.0^{\circ}$')
-
-    # projection along Y, slice at fixed x-value
-    proj2 = noisy.yProjection(0.5)  # slice at fixed value
-    plt.plot(proj2.axis(0).binCenters(),
-             proj2.flatVector(),
-             label=r'$\varphi=0.5^{\circ}$')
-
-    # projection along Y for all X values between [xlow, xup], averaged
-    proj3 = noisy.yProjection(0.41, 0.59)
-    plt.plot(proj3.axis(0).binCenters(),
-             proj3.flatVector(),
-             label=r'$<\varphi>=0.5^{\circ}$')
-
-    plt.xlim(proj1.axis(0).min(), proj1.axis(0).max())
-    plt.ylim(proj1.maxVal()*3e-6, proj1.maxVal()*3)
-    plt.xlabel(r'$\alpha_{\rm f} ^{\circ}$', fontsize=16)
-    plt.legend(loc='upper right')
-
-
-def plot(field):
-    """
-    Demonstrates modified data plots.
-    """
-    plt.subplots(2, 2, figsize=(12.80, 10.24))
-
-    plt.subplot(2, 2, 1)
-    bp.plot_histogram(field)
-    plt.title("Intensity as heatmap")
-
-    plt.subplot(2, 2, 2)
-    crop = field.crop(-1, 0.5, 1, 1)
-    bp.plot_histogram(crop)
-    plt.title("Cropping")
-
-    plt.subplot(2, 2, 3)
-    noisy = get_noisy_image(field)
-    reldiff = ba.relativeDifferenceField(noisy, field).npArray()
-    bp.plot_array(reldiff, intensity_min=1e-03, intensity_max=10)
-    plt.title("Relative difference")
-
-    plt.subplot(2, 2, 4)
-    plot_slices(noisy)
-    plt.title("Various slicing of 2D into 1D")
-
-    plt.tight_layout()
-
-if __name__ == '__main__':
-    sample = get_sample()
-    simulation = get_simulation(sample)
-    result = simulation.simulate()
-
-    if bp.datfile:
-        ba.writeDatafield(result, bp.datfile + ".int")
-        # Other supported extensions are .tif and .txt.
-        # Besides compression .gz, we support .bz2, and uncompressed.
-
-    plot(result)
-    bp.show_or_export()
diff --git a/auto/MiniExamples/varia/AccessingSimulationResults.py b/auto/MiniExamples/varia/AccessingSimulationResults.py
deleted file mode 100755
index d48cf926701eab102817c10f48fa40e340d3fb75..0000000000000000000000000000000000000000
--- a/auto/MiniExamples/varia/AccessingSimulationResults.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#!/usr/bin/env python3
-"""
-Extended example for simulation results treatment (cropping, slicing, exporting)
-"""
-import math
-import random
-import bornagain as ba
-from bornagain import angstrom, ba_plot as bp, deg, nm, std_samples
-from matplotlib import pyplot as plt
-import datetime
-
-def get_sample():
-    return std_samples.cylinders()
-
-
-def get_simulation(sample):
-    """
-    A GISAXS simulation with beam and detector defined.
-    """
-    beam = ba.Beam(1e5, 1*angstrom, 0.2*deg)
-    n = 50
-    det = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
-    simulation = ba.ScatteringSimulation(beam, sample, det)
-    return simulation
-
-
-def get_noisy_image(field):
-    """
-    Returns clone of input field filled with additional noise
-    """
-    result = field.clone()
-    noise_factor = 2.0
-    for i in range(0, result.size()):
-        amplitude = field.valAt(i)
-        sigma = noise_factor*math.sqrt(amplitude)
-        noisy_amplitude = random.gauss(amplitude, sigma)
-        result.setAt(i, noisy_amplitude)
-    return result
-
-
-def plot_histogram(field, **kwargs):
-    bp.plot_histogram(field,
-                      xlabel=r'$\varphi_f ^{\circ}$',
-                      ylabel=r'$\alpha_{\rm f} ^{\circ}$',
-                      zlabel="",
-                      **kwargs)
-
-
-def plot_slices(noisy):
-    """
-    Plot 1D slices along y-axis at certain x-axis values.
-    """
-    plt.yscale('log')
-
-    # projection along Y, slice at fixed x-value
-    proj1 = noisy.yProjection(0)
-    plt.plot(proj1.axis(0).binCenters(),
-             proj1.flatVector(),
-             label=r'$\varphi=0.0^{\circ}$')
-
-    # projection along Y, slice at fixed x-value
-    proj2 = noisy.yProjection(0.5)  # slice at fixed value
-    plt.plot(proj2.axis(0).binCenters(),
-             proj2.flatVector(),
-             label=r'$\varphi=0.5^{\circ}$')
-
-    # projection along Y for all X values between [xlow, xup], averaged
-    proj3 = noisy.yProjection(0.41, 0.59)
-    plt.plot(proj3.axis(0).binCenters(),
-             proj3.flatVector(),
-             label=r'$<\varphi>=0.5^{\circ}$')
-
-    plt.xlim(proj1.axis(0).min(), proj1.axis(0).max())
-    plt.ylim(proj1.maxVal()*3e-6, proj1.maxVal()*3)
-    plt.xlabel(r'$\alpha_{\rm f} ^{\circ}$', fontsize=16)
-    plt.legend(loc='upper right')
-
-
-def plot(field):
-    """
-    Demonstrates modified data plots.
-    """
-    plt.subplots(2, 2, figsize=(12.80, 10.24))
-
-    plt.subplot(2, 2, 1)
-    bp.plot_histogram(field)
-    plt.title("Intensity as heatmap")
-
-    plt.subplot(2, 2, 2)
-    crop = field.crop(-1, 0.5, 1, 1)
-    bp.plot_histogram(crop)
-    plt.title("Cropping")
-
-    plt.subplot(2, 2, 3)
-    noisy = get_noisy_image(field)
-    reldiff = ba.relativeDifferenceField(noisy, field).npArray()
-    bp.plot_array(reldiff, intensity_min=1e-03, intensity_max=10)
-    plt.title("Relative difference")
-
-    plt.subplot(2, 2, 4)
-    plot_slices(noisy)
-    plt.title("Various slicing of 2D into 1D")
-
-    plt.tight_layout()
-
-if __name__ == '__main__':
-    sample = get_sample()
-    simulation = get_simulation(sample)
-    result = simulation.simulate()
-
-    if bp.datfile:
-        ba.writeDatafield(result, bp.datfile + ".int")
-        # Other supported extensions are .tif and .txt.
-        # Besides compression .gz, we support .bz2, and uncompressed.
-
-    plot(result)
-    bp.show_or_export()
diff --git a/hugo/content/ex/result/export/_index.md b/hugo/content/ex/result/export/_index.md
index a1dd126501831ff11ad9a53b5a71f128a217c1f9..fe8dfcaf0dc13ff4b9b7030f606c21e26b9c74ff 100644
--- a/hugo/content/ex/result/export/_index.md
+++ b/hugo/content/ex/result/export/_index.md
@@ -81,7 +81,6 @@ hist.save("result.int.gz")
 
 Additional information can be found in the following pages:
 
-* [Accessing simulation results example](/ex/result/export/more.md)
 * [Plotting with axes in different units](/ex/result/export/axes-in-different-units)
 * [SimulationResult C++ class reference](http://apps.jcns.fz-juelich.de/doxy/BornAgain/classSimulationResult.html)
 * [Histogram1D C++ class reference](http://apps.jcns.fz-juelich.de/doxy/BornAgain/classHistogram1D.html)
diff --git a/hugo/content/ex/result/export/more.md b/hugo/content/ex/result/export/more.md
deleted file mode 100644
index 7e816901676072603010ea2b3b5baad728a56743..0000000000000000000000000000000000000000
--- a/hugo/content/ex/result/export/more.md
+++ /dev/null
@@ -1,19 +0,0 @@
-+++
-title = "Accessing simulation results"
-weight = 10
-+++
-
-### Accessing simulation results
-
-This is an extended example for the further treatment of simulation results: accessing the results, plotting, cropping, slicing and exporting. This serves as a supporting example to the [Accessing simulation results
-](/py/export/_index.md) tutorial.
-
-* The standard [Cylinders in DWBA](/ex/sim/gisas) sample
-is used for running the simulation.
-* The simulation results are retrieved as a `Histogram2D` object and then processed in various functions to achieve a resulting image.
-
-{{< galleryscg >}}
-{{< figscg src="/img/auto/varia/AccessingSimulationResults.png" width="670px" caption="Intensity images">}}
-{{< /galleryscg >}}
-
-{{< show-ex file="varia/AccessingSimulationResults.py" >}}
diff --git a/rawEx/varia/AccessingSimulationResults.py b/rawEx/varia/AccessingSimulationResults.py
deleted file mode 100755
index 033b69071b9615755d63f2b795bb5909303b541c..0000000000000000000000000000000000000000
--- a/rawEx/varia/AccessingSimulationResults.py
+++ /dev/null
@@ -1,117 +0,0 @@
-#!/usr/bin/env python3
-"""
-Extended example for simulation results treatment (cropping, slicing, exporting)
-"""
-import math
-import random
-import bornagain as ba
-from bornagain import angstrom, ba_plot as bp, deg, nm, std_samples
-from matplotlib import pyplot as plt
-import datetime
-
-def get_sample():
-    return std_samples.cylinders()
-
-
-def get_simulation(sample):
-    """
-    A GISAXS simulation with beam and detector defined.
-    """
-    beam = ba.Beam(1e5, 1*angstrom, 0.2*deg)
-    n = <%= sm ? 50 : 200 %>
-    det = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
-    simulation = ba.ScatteringSimulation(beam, sample, det)
-    return simulation
-
-
-def get_noisy_image(field):
-    """
-    Returns clone of input field filled with additional noise
-    """
-    result = field.clone()
-    noise_factor = 2.0
-    for i in range(0, result.size()):
-        amplitude = field.valAt(i)
-        sigma = noise_factor*math.sqrt(amplitude)
-        noisy_amplitude = random.gauss(amplitude, sigma)
-        result.setAt(i, noisy_amplitude)
-    return result
-
-
-def plot_histogram(field, **kwargs):
-    bp.plot_histogram(field,
-                      xlabel=r'$\varphi_f ^{\circ}$',
-                      ylabel=r'$\alpha_{\rm f} ^{\circ}$',
-                      zlabel="",
-                      **kwargs)
-
-
-def plot_slices(noisy):
-    """
-    Plot 1D slices along y-axis at certain x-axis values.
-    """
-    plt.yscale('log')
-
-    # projection along Y, slice at fixed x-value
-    proj1 = noisy.yProjection(0)
-    plt.plot(proj1.axis(0).binCenters(),
-             proj1.flatVector(),
-             label=r'$\varphi=0.0^{\circ}$')
-
-    # projection along Y, slice at fixed x-value
-    proj2 = noisy.yProjection(0.5)  # slice at fixed value
-    plt.plot(proj2.axis(0).binCenters(),
-             proj2.flatVector(),
-             label=r'$\varphi=0.5^{\circ}$')
-
-    # projection along Y for all X values between [xlow, xup], averaged
-    proj3 = noisy.yProjection(0.41, 0.59)
-    plt.plot(proj3.axis(0).binCenters(),
-             proj3.flatVector(),
-             label=r'$<\varphi>=0.5^{\circ}$')
-
-    plt.xlim(proj1.axis(0).min(), proj1.axis(0).max())
-    plt.ylim(proj1.maxVal()*3e-6, proj1.maxVal()*3)
-    plt.xlabel(r'$\alpha_{\rm f} ^{\circ}$', fontsize=16)
-    plt.legend(loc='upper right')
-
-
-def plot(field):
-    """
-    Demonstrates modified data plots.
-    """
-    plt.subplots(2, 2, figsize=(12.80, 10.24))
-
-    plt.subplot(2, 2, 1)
-    bp.plot_histogram(field)
-    plt.title("Intensity as heatmap")
-
-    plt.subplot(2, 2, 2)
-    crop = field.crop(-1, 0.5, 1, 1)
-    bp.plot_histogram(crop)
-    plt.title("Cropping")
-
-    plt.subplot(2, 2, 3)
-    noisy = get_noisy_image(field)
-    reldiff = ba.relativeDifferenceField(noisy, field).npArray()
-    bp.plot_array(reldiff, intensity_min=1e-03, intensity_max=10)
-    plt.title("Relative difference")
-
-    plt.subplot(2, 2, 4)
-    plot_slices(noisy)
-    plt.title("Various slicing of 2D into 1D")
-
-    plt.tight_layout()
-
-if __name__ == '__main__':
-    sample = get_sample()
-    simulation = get_simulation(sample)
-    result = simulation.simulate()
-
-    if bp.datfile:
-        ba.writeDatafield(result, bp.datfile + ".int")
-        # Other supported extensions are .tif and .txt.
-        # Besides compression .gz, we support .bz2, and uncompressed.
-
-    plot(result)
-    bp.show_or_export()