From 6c8ec1e6e2c794e990e2816d7dc6759d5e68c7e4 Mon Sep 17 00:00:00 2001
From: "Joachim Wuttke (l)" <j.wuttke@fz-juelich.de>
Date: Tue, 11 Oct 2016 23:58:40 +0200
Subject: [PATCH] factor 2pi in S(q) was wrong.

---
 Doc/UserManual/Assemblies.tex | 7 ++++---
 1 file changed, 4 insertions(+), 3 deletions(-)

diff --git a/Doc/UserManual/Assemblies.tex b/Doc/UserManual/Assemblies.tex
index 8b71eb3f041..4e92899d89a 100644
--- a/Doc/UserManual/Assemblies.tex
+++ b/Doc/UserManual/Assemblies.tex
@@ -552,11 +552,12 @@ correlation function is given by:
 \begin{equation}
   \rho_S\GD(\r) = \sum_{n\neq 0} \delta(x-na)\delta(y).
 \end{equation}
-The corresponding interference function then becomes
+Using standard relations for the Dirac comb,
+one obtains the interference function
 \begin{equation}
-  \SD(\q) = \frac{2\pi}{a}\sum_k \delta(q_x - \frac{2\pi k}{a}),
+  \SD(\q) = \frac{1}{a}\sum_k \delta(q_x - \frac{2\pi k}{a}),
 \end{equation}
-where $2\pi /a$ is a basis vector for the reciprocal lattice.
+which has the reciprocal lattice period $2\pi/a$.
 
 For computational reasons in \BornAgain, the delta functions appearing in the interference function
 are replaced by distributions of a finite width $H(q_x-2\pi k/a)$. This amounts to convoluting the
-- 
GitLab