From 6c8ec1e6e2c794e990e2816d7dc6759d5e68c7e4 Mon Sep 17 00:00:00 2001 From: "Joachim Wuttke (l)" <j.wuttke@fz-juelich.de> Date: Tue, 11 Oct 2016 23:58:40 +0200 Subject: [PATCH] factor 2pi in S(q) was wrong. --- Doc/UserManual/Assemblies.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/Doc/UserManual/Assemblies.tex b/Doc/UserManual/Assemblies.tex index 8b71eb3f041..4e92899d89a 100644 --- a/Doc/UserManual/Assemblies.tex +++ b/Doc/UserManual/Assemblies.tex @@ -552,11 +552,12 @@ correlation function is given by: \begin{equation} \rho_S\GD(\r) = \sum_{n\neq 0} \delta(x-na)\delta(y). \end{equation} -The corresponding interference function then becomes +Using standard relations for the Dirac comb, +one obtains the interference function \begin{equation} - \SD(\q) = \frac{2\pi}{a}\sum_k \delta(q_x - \frac{2\pi k}{a}), + \SD(\q) = \frac{1}{a}\sum_k \delta(q_x - \frac{2\pi k}{a}), \end{equation} -where $2\pi /a$ is a basis vector for the reciprocal lattice. +which has the reciprocal lattice period $2\pi/a$. For computational reasons in \BornAgain, the delta functions appearing in the interference function are replaced by distributions of a finite width $H(q_x-2\pi k/a)$. This amounts to convoluting the -- GitLab