diff --git a/Base/Math/Functions.cpp b/Base/Math/Functions.cpp index 56765172b4cf2de1c019eb976899f4dcfdd17da6..8523960d7da366cf653e05b5de58e50c31561198 100644 --- a/Base/Math/Functions.cpp +++ b/Base/Math/Functions.cpp @@ -51,7 +51,7 @@ double Math::cot(double x) double Math::sinc(double x) // Sin(x)/x { - if (x==0) + if (x == 0) return 1; return std::sin(x) / x; } diff --git a/Base/Vector/Vectors3D.h b/Base/Vector/Vectors3D.h index 1af762c0da2dd1c6055a859db5e442d38dc41548..4db665c61bf73a24e38b76e937dbe309eebc094c 100644 --- a/Base/Vector/Vectors3D.h +++ b/Base/Vector/Vectors3D.h @@ -27,9 +27,9 @@ using C3 = Vec3<complex_t>; //! Three-dimensional vector template, for use with integer, double, or complex components. -template <class T> class Vec3 : public std::array<T,3> { +template <class T> class Vec3 : public std::array<T, 3> { private: - using super = std::array<T,3>; + using super = std::array<T, 3>; public: // ------------------------------------------------------------------------- @@ -40,7 +40,7 @@ public: Vec3() : super{0., 0., 0.} {} //! Constructs a vector from cartesian components. - Vec3(const T x, const T y, const T z) : super{x,y,z} {} + Vec3(const T x, const T y, const T z) : super{x, y, z} {} // ------------------------------------------------------------------------- // Component access @@ -162,10 +162,7 @@ public: double angle(const Vec3<T>& v) const; //! Returns projection of this onto other vector: (this*v)*v/|v|^2. - Vec3<T> project(const Vec3<T>& v) const - { - return dot(v) * v / v.mag2(); - } + Vec3<T> project(const Vec3<T>& v) const { return dot(v) * v / v.mag2(); } // ------------------------------------------------------------------------- // Rotations @@ -219,16 +216,14 @@ template <class T> inline Vec3<T> operator-(const Vec3<T>& v) //! Addition of two vectors. //! @relates Vec3 -template <class T> -inline Vec3<T> operator+(const Vec3<T>& a, const Vec3<T>& b) +template <class T> inline Vec3<T> operator+(const Vec3<T>& a, const Vec3<T>& b) { return {a.x() + b.x(), a.y() + b.y(), a.z() + b.z()}; } //! Subtraction of two vectors. //! @relates Vec3 -template <class T> -inline Vec3<T> operator-(const Vec3<T>& a, const Vec3<T>& b) +template <class T> inline Vec3<T> operator-(const Vec3<T>& a, const Vec3<T>& b) { return {a.x() - b.x(), a.y() - b.y(), a.z() - b.z()}; } @@ -269,9 +264,7 @@ template <class T, class U> inline Vec3<T> operator/(const Vec3<T>& v, U a) //! Returns dot product of (complex) vectors (antilinear in the first [=self] argument). #ifndef SWIG -template <class T> -template <class U> -inline auto Vec3<T>::dot(const Vec3<U>& v) const +template <class T> template <class U> inline auto Vec3<T>::dot(const Vec3<U>& v) const { Vec3<T> left_star = this->conj(); return left_star.x() * v.x() + left_star.y() * v.y() + left_star.z() * v.z(); @@ -280,12 +273,10 @@ inline auto Vec3<T>::dot(const Vec3<U>& v) const //! Returns cross product of (complex) vectors. #ifndef SWIG -template <class T> -template <class U> -inline auto Vec3<T>::cross(const Vec3<U>& v) const +template <class T> template <class U> inline auto Vec3<T>::cross(const Vec3<U>& v) const { - return Vec3<decltype(this->x() * v.x())>( - y() * v.z() - v.y() * z(), z() * v.x() - v.z() * x(), x() * v.y() - v.x() * y()); + return Vec3<decltype(this->x() * v.x())>(y() * v.z() - v.y() * z(), z() * v.x() - v.z() * x(), + x() * v.y() - v.x() * y()); } #endif // USER_API