diff --git a/Base/Math/Functions.cpp b/Base/Math/Functions.cpp
index 56765172b4cf2de1c019eb976899f4dcfdd17da6..8523960d7da366cf653e05b5de58e50c31561198 100644
--- a/Base/Math/Functions.cpp
+++ b/Base/Math/Functions.cpp
@@ -51,7 +51,7 @@ double Math::cot(double x)
 
 double Math::sinc(double x) // Sin(x)/x
 {
-    if (x==0)
+    if (x == 0)
         return 1;
     return std::sin(x) / x;
 }
diff --git a/Base/Vector/Vectors3D.h b/Base/Vector/Vectors3D.h
index 1af762c0da2dd1c6055a859db5e442d38dc41548..4db665c61bf73a24e38b76e937dbe309eebc094c 100644
--- a/Base/Vector/Vectors3D.h
+++ b/Base/Vector/Vectors3D.h
@@ -27,9 +27,9 @@ using C3 = Vec3<complex_t>;
 
 //! Three-dimensional vector template, for use with integer, double, or complex components.
 
-template <class T> class Vec3 : public std::array<T,3> {
+template <class T> class Vec3 : public std::array<T, 3> {
 private:
-    using super = std::array<T,3>;
+    using super = std::array<T, 3>;
 
 public:
     // -------------------------------------------------------------------------
@@ -40,7 +40,7 @@ public:
     Vec3() : super{0., 0., 0.} {}
 
     //! Constructs a vector from cartesian components.
-    Vec3(const T x, const T y, const T z) : super{x,y,z} {}
+    Vec3(const T x, const T y, const T z) : super{x, y, z} {}
 
     // -------------------------------------------------------------------------
     // Component access
@@ -162,10 +162,7 @@ public:
     double angle(const Vec3<T>& v) const;
 
     //! Returns projection of this onto other vector: (this*v)*v/|v|^2.
-    Vec3<T> project(const Vec3<T>& v) const
-    {
-        return dot(v) * v / v.mag2();
-    }
+    Vec3<T> project(const Vec3<T>& v) const { return dot(v) * v / v.mag2(); }
 
     // -------------------------------------------------------------------------
     // Rotations
@@ -219,16 +216,14 @@ template <class T> inline Vec3<T> operator-(const Vec3<T>& v)
 
 //! Addition of two vectors.
 //! @relates Vec3
-template <class T>
-inline Vec3<T> operator+(const Vec3<T>& a, const Vec3<T>& b)
+template <class T> inline Vec3<T> operator+(const Vec3<T>& a, const Vec3<T>& b)
 {
     return {a.x() + b.x(), a.y() + b.y(), a.z() + b.z()};
 }
 
 //! Subtraction of two vectors.
 //! @relates Vec3
-template <class T>
-inline Vec3<T> operator-(const Vec3<T>& a, const Vec3<T>& b)
+template <class T> inline Vec3<T> operator-(const Vec3<T>& a, const Vec3<T>& b)
 {
     return {a.x() - b.x(), a.y() - b.y(), a.z() - b.z()};
 }
@@ -269,9 +264,7 @@ template <class T, class U> inline Vec3<T> operator/(const Vec3<T>& v, U a)
 
 //! Returns dot product of (complex) vectors (antilinear in the first [=self] argument).
 #ifndef SWIG
-template <class T>
-template <class U>
-inline auto Vec3<T>::dot(const Vec3<U>& v) const
+template <class T> template <class U> inline auto Vec3<T>::dot(const Vec3<U>& v) const
 {
     Vec3<T> left_star = this->conj();
     return left_star.x() * v.x() + left_star.y() * v.y() + left_star.z() * v.z();
@@ -280,12 +273,10 @@ inline auto Vec3<T>::dot(const Vec3<U>& v) const
 
 //! Returns cross product of (complex) vectors.
 #ifndef SWIG
-template <class T>
-template <class U>
-inline auto Vec3<T>::cross(const Vec3<U>& v) const
+template <class T> template <class U> inline auto Vec3<T>::cross(const Vec3<U>& v) const
 {
-    return Vec3<decltype(this->x() * v.x())>(
-        y() * v.z() - v.y() * z(), z() * v.x() - v.z() * x(), x() * v.y() - v.x() * y());
+    return Vec3<decltype(this->x() * v.x())>(y() * v.z() - v.y() * z(), z() * v.x() - v.z() * x(),
+                                             x() * v.y() - v.x() * y());
 }
 #endif // USER_API