diff --git a/auto/Examples/fit/scatter2d/consecutive_fitting.py b/auto/Examples/fit/scatter2d/consecutive_fitting.py index d53f842e29f67681b4f243d61672239c0d8022ab..5e294e5fa1d019140083a07deb09a16942fa5f9b 100755 --- a/auto/Examples/fit/scatter2d/consecutive_fitting.py +++ b/auto/Examples/fit/scatter2d/consecutive_fitting.py @@ -7,7 +7,6 @@ space and roughly find local minimum. The second Minuit2 minimizer will continue after that to find precise minimum location. """ -import numpy as np from matplotlib import pyplot as plt import bornagain as ba from bornagain import ba_fitmonitor, deg, angstrom, nm @@ -59,7 +58,7 @@ def fake_data(): simulation = get_simulation(P) result = simulation.simulate() - return result.noisy(0.1, 0.1) + return result.noisy(0.3, 0.5) def run_fitting(): @@ -70,17 +69,17 @@ def run_fitting(): fit_objective = ba.FitObjective() fit_objective.addFitPair(get_simulation, data, 1) - fit_objective.initPrint(10) + fit_objective.initPrint(30) observer = ba_fitmonitor.PlotterGISAS() - fit_objective.initPlot(10, observer) + fit_objective.initPlot(30, observer) """ Setting fitting parameters with starting values. Here we select starting values being quite far from true values to puzzle our minimizer's as much as possible. """ P = ba.Parameters() - P.add("height", 1.*nm, min=0.01, max=30, step=0.05*nm) - P.add("radius", 20.*nm, min=0.01, max=30, step=0.05*nm) + P.add("height", 1.*nm, min=0.01, max=30) + P.add("radius", 20.*nm, min=0.01, max=30) """ Now we run first minimization round using the Genetic minimizer. The Genetic minimizer is able to explore large parameter space @@ -88,7 +87,7 @@ def run_fitting(): """ minimizer = ba.Minimizer() minimizer.setMinimizer("Genetic", "", - "MaxIterations=2;PopSize=300;RandomSeed=1") + "MaxIterations=3;PopSize=500") result = minimizer.minimize(fit_objective.evaluate, P) fit_objective.finalize(result) diff --git a/auto/MiniExamples/fit/scatter2d/consecutive_fitting.py b/auto/MiniExamples/fit/scatter2d/consecutive_fitting.py index 97c1adeb80325d4831912fde77a917ce39b2a13c..9df5d93c4907aabf214c8afa5b0dbae523d01a9a 100755 --- a/auto/MiniExamples/fit/scatter2d/consecutive_fitting.py +++ b/auto/MiniExamples/fit/scatter2d/consecutive_fitting.py @@ -7,7 +7,6 @@ space and roughly find local minimum. The second Minuit2 minimizer will continue after that to find precise minimum location. """ -import numpy as np from matplotlib import pyplot as plt import bornagain as ba from bornagain import ba_fitmonitor, deg, angstrom, nm @@ -59,7 +58,7 @@ def fake_data(): simulation = get_simulation(P) result = simulation.simulate() - return result.noisy(0.1, 0.1) + return result.noisy(0.3, 0.5) def run_fitting(): @@ -70,17 +69,17 @@ def run_fitting(): fit_objective = ba.FitObjective() fit_objective.addFitPair(get_simulation, data, 1) - fit_objective.initPrint(10) + fit_objective.initPrint(30) observer = ba_fitmonitor.PlotterGISAS() - plt.close() # (hide plot) fit_objective.initPlot(10, observer) + plt.close() # (hide plot) fit_objective.initPlot(30, observer) """ Setting fitting parameters with starting values. Here we select starting values being quite far from true values to puzzle our minimizer's as much as possible. """ P = ba.Parameters() - P.add("height", 1.*nm, min=0.01, max=30, step=0.05*nm) - P.add("radius", 20.*nm, min=0.01, max=30, step=0.05*nm) + P.add("height", 1.*nm, min=0.01, max=30) + P.add("radius", 20.*nm, min=0.01, max=30) """ Now we run first minimization round using the Genetic minimizer. The Genetic minimizer is able to explore large parameter space @@ -88,7 +87,7 @@ def run_fitting(): """ minimizer = ba.Minimizer() minimizer.setMinimizer("Genetic", "", - "MaxIterations=1;PopSize=10;RandomSeed=1") + "MaxIterations=1;PopSize=10") result = minimizer.minimize(fit_objective.evaluate, P) fit_objective.finalize(result) diff --git a/rawEx/fit/scatter2d/consecutive_fitting.py b/rawEx/fit/scatter2d/consecutive_fitting.py index 74ab218391ffbc0bd9c7d7db107b4c5e670999d1..471fd42d41032d98686384ad3bdb683ae4dc2511 100755 --- a/rawEx/fit/scatter2d/consecutive_fitting.py +++ b/rawEx/fit/scatter2d/consecutive_fitting.py @@ -7,7 +7,6 @@ space and roughly find local minimum. The second Minuit2 minimizer will continue after that to find precise minimum location. """ -import numpy as np from matplotlib import pyplot as plt import bornagain as ba from bornagain import ba_fitmonitor, deg, angstrom, nm @@ -59,7 +58,7 @@ def fake_data(): simulation = get_simulation(P) result = simulation.simulate() - return result.noisy(0.1, 0.1) + return result.noisy(0.3, 0.5) def run_fitting(): @@ -70,17 +69,17 @@ def run_fitting(): fit_objective = ba.FitObjective() fit_objective.addFitPair(get_simulation, data, 1) - fit_objective.initPrint(10) + fit_objective.initPrint(30) observer = ba_fitmonitor.PlotterGISAS() - <%= sm ? "plt.close() # (hide plot) " :"" %>fit_objective.initPlot(10, observer) + <%= sm ? "plt.close() # (hide plot) " :"" %>fit_objective.initPlot(30, observer) """ Setting fitting parameters with starting values. Here we select starting values being quite far from true values to puzzle our minimizer's as much as possible. """ P = ba.Parameters() - P.add("height", 1.*nm, min=0.01, max=30, step=0.05*nm) - P.add("radius", 20.*nm, min=0.01, max=30, step=0.05*nm) + P.add("height", 1.*nm, min=0.01, max=30) + P.add("radius", 20.*nm, min=0.01, max=30) """ Now we run first minimization round using the Genetic minimizer. The Genetic minimizer is able to explore large parameter space @@ -89,7 +88,7 @@ def run_fitting(): minimizer = ba.Minimizer() minimizer.setMinimizer("Genetic", "", "<%= sm ? "MaxIterations=1;PopSize=10" : - "MaxIterations=2;PopSize=300" %>;RandomSeed=1") + "MaxIterations=3;PopSize=500" %>") result = minimizer.minimize(fit_objective.evaluate, P) fit_objective.finalize(result)