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1 Wave propagation and scattering

{SSca}
This chapter introduces the formalism to described neutron and X-ray propagation
and scattering, as needed for the analysis of grazing-incidence small-angle scattering
(GISAS) experiments.

1.1 Wave propagation
{Swave}

In this section, we review the wave equations that describe the propagation of neu-
trons (Secs. 1.1.1 and 1.1.2) and X-rays (Sec. 1.1.3) in matter, and combine them
into a unified wave equation (Sec. 1.1.4) that is the base for the all following analysis.
This provides justification and background for Eqns. 1–3 in the BornAgain reference
paper [1].

1.1.1 Neutrons
{SnScalar}

The scalar wavefunction ψ(r, t) of a free neutron in absence of a magnetic field is
governed by the Schrödinger equation

iℏ∂tψ(r, t) =
{
− ℏ2

2m
∇2 + V (r)

}
ψ(r, t). (1.1) {{ESchrodi1}}{{ESchrodi1}}

Since BornAgain only aims at modelling elastic scattering, any time dependence of the
potential is averaged out in the definition V (r) := 〈V (r, t)〉. Inelastic scattering, in
principle, can be accounted for by an extra contribution damping.1 Therefore we only
need to consider monochromatic waves with given frequency ω. In consequence, the
wavefunction

ψ(r, t) = ψ(r)e−iωt (1.2) {{Estationarywave}}{{Estationarywave}}

factorizes into a stationary wave and a time-dependent phase factor. In the following,
we will characterize the incoming radiation not by its energy ℏω, but by its vacuum
wavenumber K, given by the dispersion relation

ℏω =
(ℏK)2

2m
. (1.3) {Estationarywave}

1This is not explicitly supported in the software, but users are free to increase the imaginary part
of the refractive index to emulate damping by inelastic losses. {Flosses}
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The Schrödinger equation (1.1) then takes the simple form{
∇2 +K2 − 4πvnucl(r)

}
ψ(r) = 0 (1.4) {{ESchrodi2}}{{ESchrodi2}}

with the rescaled form of Fermi’s pseudopotential

vnucl(r) :=
m

2πℏ2
V (r) =

∑
j

〈bjδ (r− rj(t))〉 . (1.5) {{Evrraw}}{{Evrraw}}

The sum runs over all nuclei exposed to ψ. The subscript “nucl” designates nuclear
as opposed to magnetic scattering. The bound scattering length bj is isotope specific;
values are tabulated [2].

In small-angle scattering, as elsewhere in neutron optics [3], the potential can be
coarse-grained by spatially averaging over at least a few atomic diameters,

vnucl(r) =
∑
s

bsρs(r), (1.6) {{Evrcoarse}}{{Evrcoarse}}

where the sum now runs over chemical elements, bs := 〈bj〉j∈s is the bound coherent
scattering length, and ρs is a number density. In passing from (1.5) to (1.6), we ne-
glected Bragg scattering from atomic-scale correlation, and incoherent scattering from
spin or isotope related fluctuations of bj . In small-angle experiments, these types of
scattering only matter as loss channels.2 Furthermore, incoherent scattering, as inelas-
tic scattering, contributes to the diffuse background in the detector. In conclusion, the
coarse-grained neutron optical potential (1.6) is just a scattering length density (SLD)
[3, eq. 2.8.37].

In general, the incident neutron beam in a scattering experiment is not a pure
quantum state, but a statistical mixture of such states, and must therefore be described
by a density matrix,

ρ̂ :=
∑
j

pj |ψj〉 〈ψj | , (1.7) {{EdefRho}}{{EdefRho}}

where pj is the probability of pure state ψj . Let us define the wave vector operator k̂

and the flux operator

Ĵ := |r〉 〈r| k̂+ k̂† |r〉 〈r| . (1.8) {{EdefJop}}{{EdefJop}}

The current density, or flux, is then given by

J(r) := Tr{ρ̂Ĵ} ∝
∑
j

pj

{
ψj(r)

∗∇
2i
ψj(r)− ψj(r)

∇
2i
ψj(r)

∗
}
. (1.9) {{EdefJ}}{{EdefJ}}

This is in arbitrary units, since we do not impose a specific normalization on the
unbound wavefunction ψ. To compute scattering cross sections, we will only need the
ratio of scattered to incident flux. Mostly we will assume pure states to be plane waves

ψk(r) := eikr. (1.10) {{EplaneWave}}{{EplaneWave}}
2Same remark as in Footnote 1: To model these losses, use the imaginary part of the refractive

index.
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In vacuum, the wavevector k purely real. We replace the sum in (1.7) by an integral,
and find that the flux is simply

J(r) =

∫
d3k pk |ψk(r)|2k. (1.11) {EplaneWave}

1.1.2 Neutrons in a magnetic field
{SnSpinor}

In presence of a magnetic field, the propagation of free neutrons becomes spin depen-
dent. Therefore the scalar wavefunction of Sec. 1.1.1 must be replaced by spinor Ψ.
The magnetic moment µn of the neutron couples to the magnetic induction B [4, 5].
With the coupling term, the Schrödinger equation (1.1) becomes{

− ℏ2

2m
∇2 + V (r) + µnB(r)σ̂ − ℏω

}
Ψ(r) = 0, (1.12) {{EHSchrodi}}{{EHSchrodi}}

where σ̂ is the Pauli vector, composed of the three Pauli matrices. We introduce the
reduced field

b :=
mµn
2πℏ2

B, (1.13) {EHSchrodi}

to rewrite the Schrödinger equation in analogy to (1.4) as{
∇2 +K2 − 4πvnucl(r)− 4πb(r)σ̂

}
Ψ(r) = 0. (1.14) {{ESchrodi2H}}{{ESchrodi2H}}

The density matrix (1.7) becomes

ρ̂ :=
∑
i

pi |Ψi〉 〈Ψi| . (1.15) {{EdefRhoSpinor}}{{EdefRhoSpinor}}

The total flux is still given by (1.8) and (1.9). Beam polarization is described by an
appropriate density matrix.

1.1.3 X-rays
{SXwave}

The propagation of X-rays is governed by Maxwell’s equations,

∇×E = −∂tB, ∇B = 0, B = µ(r)µ0H,

∇×H = +∂tD, ∇D = 0, D = ϵ(r)ϵ0E.

(1.16) {{EMaxwell}}{{EMaxwell}}

Since BornAgain only addresses elastic scattering, we assume the permeability and
permittivity tensors µ and ϵ to be time-independent. Therefore, as in Sec. 1.1.1, we
only need to consider monochromatic waves with given frequency ω, and each of the
fields E, D, H, B factorizes into a stationary field and a time-dependent phase factor.3
We will formulate the following in terms of the electric field

E(r, t) = E(r)e−iωt. (1.17) {{EstationaryX}}{{EstationaryX}}
3This phase factor can be defined with a plus or a minus sign in the exponent. Most texts on X-ray

crystallography, including influential texts on GISAXS [6], prefer the crystallographic convention with
a plus sign. In BornAgain, we prefer the opposite quantum-mechanical convention for consistency with
the neutron case (1.2), where the minus sign is an inevitable consequence of the standard form of the
Schrödinger equation.
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The other three fields can be obtained from E by straightforward application of (1.16).
Since magnetic refraction or scattering is beyong the scope of BornAgain, the

relative magnetic permeability tensor is always µ(r) = 1. As customary in SAXS
and GISAXS, we assume that the dielectric properties of the material are those of
a polarizable electron cloud.4 Thereby the relative dielectric permittivity tensor ϵ
becomes a scalar,

ϵ(r) = 1− 4πre
K2

ρ(r), (1.18) {EstationaryX}

with the classical electron radius re = e2/mc2 ' 2.8 · 10−15 m, the electron number
density ρ(r), and the vacuum wavenumber K, given by the dispersion relation

K2 = µ0ϵ0ω
2. (1.19)

With these simplifying assumptions about ϵ and µ, Maxwell’s equations yield the wave
equation

∇×∇×E = K2ϵ(r)E. (1.20) {{ENabCrossNabE}}{{ENabCrossNabE}}

Using a standard identity from vector analysis, it can be brought into the more
tractable form{

∇2 −∇ · ∇+K2ϵ(r)
}
E(r) = 0. (1.21) {{ENabNabE}}{{ENabNabE}}

It is well known that the electromagnetic energy flux is given by the Poynting
vector. However, its standard definition, S := E×H, is not applicable here because it
only holds for real fields. With our complex notation, it must be replaced by

S := ReE(r, t)× ReH(r, t). (1.22) {ENabNabE}

For stationary oscillations (1.17), the time average is

〈S〉 = 1

4
〈E(r)×H(r)∗ + c. c.〉 . (1.23)

We specialize to vacuum with ϵ(r) = 1, and obtain

〈S〉 = 1

4iωµ0
(E∗(r)× (∇×E(r)) + c. c.) . (1.24)

For a plane wave E(r) = Eke
ikr, we find

〈S〉 = 1

2ωµ0
|Ek|2Rek, (1.25)

which confirms the common knowledge that the radiation intensity counted in a de-
tector is proportional to the squared electric field amplitude.

4This is occasionally called the Laue model [7].
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1.1.4 Unified wave equation
{SuniWave}

As in Eqns. 1–3 of Ref. [1], we combine all the above in a unified wave equation

(D0 − 4πv̂(r))Ψ(r) = 0 (1.26) {{EWAVE}}{{EWAVE}}

with the vacuum wave operator

D0 :=

{
∇2 +K2 for neutrons,
∇2 −∇ · ∇+K2 for X-rays

(1.27) {{EDo}}{{EDo}}

and the potential5

v̂(r) :=


vnucl(r) for neutrons (scalar),
vnucl(r) + b(r)σ̂ for neutrons (spinorial),
K2(1− ϵ(r))/(4π) for X-rays.

(1.28) {{ETV}}{{ETV}}

The generic wave amplitude Ψ shall represent the scalar neutron wavefunction ψ, the
spinor Ψ, or the electric field E, as applicable. The hat in v̂ denotes an operator in
spin space; it can be ignored in the scalar cases.

5This corrects Eq. 3 in our reference paper [1], which had a sign error in the X-ray case.

BornAgain May 31, 2023 1:5



BA|hyperindexformat\seeBorn approximation
Born approximation|hyperpage
Grazing-incidence small-

angle scattering|hyperpage
Distorted-wave Born approximation|hyperpage
Distortion field|hyperpage
Perturbation potential|hyperpage
Potential!perturbation|hyperpage
Distorted wave!operator|hyperpage
Wave!operator!distorted|hyperpage
Unperturbed distorted wave equation|hyperpage
Distorted wave!wave equation|hyperpage
Wave equation!unperturbed distorted|hyperpage
Distorted wave|hyperpage
Wave!distorted|hyperpage
Plane!wave|hyperpage
Wave!plane|hyperpage
Vacuum|hyperpage
Refractive index|hyperpage
Index of refraction|hyperindexformat\see Refractive index

1.2 Distorted-wave Born approximation
{SDWBA}

Neutron or X-ray scattering by condensed matter is usually described in Born approx-
imation (BA), which is treats the potential v̂(r) as a small perturbation. This is not
adequate if incident or scattered wave propagate under small grazing angles, as refrac-
tion and reflection are no longer small. For grazing-incidence small-angle scattering,
we need the more generic distorted-wave Born approximation (DWBA).6

1.2.1 Distortion versus perturbation
{Sdecompose}

To get started, we decompose the potential (1.28) into a more regular and a more
fluctuating part:

v̂(r) =: v(r) + δv̂(r). (1.29) {{Edecompose}}{{Edecompose}}

The distortion field v comprises regular, well-known features of the sample. The per-
turbation potential δv̂ stands for the more irregular, unknown features of the sample
one ultimately wants to study in a scattering experiment. The wave equation (1.26)
shall henceforth be written as

D(r)Ψ(r) = 4πδv̂(r) (1.30) {{EDPsi}}{{EDPsi}}

with the distorted wave operator

D(r) := D0 − 4πv(r). (1.31) {EDPsi}

Only δv̂ shall be treated as a perturbation. The propagation of incident and scattered
waves under the influence of v, in contrast, shall be handled exactly, through analytical
solution of the unperturbed distorted wave equation

D(r)Ψ(r) = 0. (1.32) {{EDPsi0}}{{EDPsi0}}

The solutions are called distorted because they differ from the plane waves obtained
in the vacuum case v = 0.

Except for neutrons in a magnetic field the distortion field is scalar so that it can
be expressed through the refractive index

n(r) :=

√
1− 4πv(r)

K2
=

{ √
1− 4πv(r)/K2 for neutrons,√
ϵ(r) for X-rays.

(1.33) {{EnkK}}{{EnkK}}

6The DWBA was originally devised by Massey and Mott (ca 1933) for collisions of charged particles.
Summaries can be found in some quantum mechanics textbooks (Messiah, Schiff) and in monographs
on scattering theory (e. g. Newton). The first explicit applications to grazing-incidence scattering were
published in 1982: Vineyard [8] discussed X-ray scattering, but failed to account for the distortion of
the scattered wave; Mazur and Mills [9] deployed heavy formalism to compute the inelastic neutron
scattering cross section of ferromagnetic surface spin waves from scratch. A concise derivation of the
DWBA cross section was provided by Dietrich and Wagner (1984/85) for X-rays [10] and neutrons
[11]. Unfortunately, their work was overlooked in much of the later literature, which often fell back to
less convincing derivations.
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If v(r) or ϵ(r) has an imaginary part, describing absorption, then n(r) is a complex
number. Conventionally, n is parameterized by two real numbers:

n =: 1− δ + iβ. (1.34) {{Endb1}}{{Endb1}}

For thermal neutrons and X-rays, δ and β are almost always nonnegative,7 and much
smaller than 1. This explains why in most scattering geometries the ordinary Born
approximation with v ≡ 0 is perfectly adequate. In layered samples under grazing
incidence, however, even small differences in n can cause substantial refraction and
reflection. To model GISAS, therefore, it is necessary to use DWBA, and to let v
represent the average vertical refractive index profile n(z).

1.2.2 Differential cross section
{SdiffCross}

The ratio of the scattered flux hitting an infinitesimal detector area r2dΩ to the incident
flux is expressed as a differential cross section

dσ

dΩ
:=

r2J(r)

Ji
. (1.35) {{Exsectiondef}}{{Exsectiondef}}

The geometric factors that are needed to convert dσ/dΩ into detector counts will be
discussed below in Sec. 5.2.

From standard textbooks we take the generic differential cross section of elastic
scattering in first order Born approximation,8

dσ

dΩ
= |〈ψi|δv̂|ψf〉|2, (1.36) {{Exsection}}{{Exsection}}

where the matrix element in Dirac bra-ket notation stands for the integral

〈ψi|δv̂|ψf〉 :=
∫

d3r ψ∗
i (r)δv̂(r)ψf(r). (1.37) {{Etrama}}{{Etrama}}

For brevity and mathematical convenience, the integral has no bounds and therefore
formally runs over the entire space. However, δv̂(r) is nonzero only if r lies inside the
finite sample volume.

In ordinary (non-distorted) Born approximation, the incident wavefunction ψi is
a plane wave (1.10). By means of a far-field expansion, the outgoing spherical wave
ψf, traced back from the detector towards the sample, is also approximated as a plane
wave. Thereby (1.37) becomes a Fourier integral

〈ψi|δv̂|ψf〉 =
∫
d3r e−ikirδv̂(r)eikfr =

∫
d3r eiqrδv̂(r) (1.38) {{Etramaq}}{{Etramaq}}

with the scattering vector

q := kf − ki. (1.39) {Etramaq}

7The plus sign in front of iβ is a consequence of the quantum-mechanical sign convention; in the
X-ray crystallography convention it would be a minus sign.

8For a particularly detailed derivation see Schober’s lecture notes on neutron scattering [12].
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(a)

S

D

(b)

S

D

Figure 1.1: (a) In a multilayer sample, the scattered wave propagates from the scattering
center S towards the detector D through different paths, due to partial reflection by interfaces.
(b) In far-field approximation, the detector location is so remote that all rays leaving the sample
can be considered parallel. In consequence, when the scattered wave is traced back from the
detector it can be considered plane until it reaches the sample. {Fgreen1}

This plane-wave approximation breaks down under grazing incidence as refraction
and reflection by surfaces and interfaces cannot be neglected. While (1.36) still holds,
(1.37) does not. In DWBA, the incident wave ψi ceases to be plane when it reaches
the sample (Fig. 1.1). Inside the sample it evolves according to the unperturbed wave
equation (1.32). Similarly, the scattered wave ψf, traced back from the detector and
in first order of far-field expansion, is a plane wave outside the sample, and must be
traced back inside the sample according to (1.32). The wave propagation inside a
discrete multilayer sample will be worked out in Chapter 2.
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2 Flat multilayer systems

{sec:Multilayers}
This chapter specializes the DWBA for a multilayer system with v(r) = v(z).

2.1 Wave propagation and scattering in layered samples
{Swave21}

2.1.1 Wave propagation in 2+1 dimensions
{Sgrazingwave}

We now specialize the results from Chapter 1 to wave propagation in a sample that is,
on average, translationally invariant in 2 dimensions. Following standard convention,
we choose the surface of the sample in the xy plane, and its normal along z. In
visualizations, we will always represent the xy plane as horizontal, and the z axis
as upward vertical, altough there are “horizontal” reflectometers where the sample is
upright to allow for a horizontal scattering plane.

Scattering from such systems will be studied in distorted-wave Born approxima-
tion. To determine the neutron scattering cross section (1.36), we need to determine
the incident and final wavefunctions ψi and ψf. Vertical variations of the refractive
index n(z) cause refraction and reflection. For waves propagating at small glancing
angles, the reflectance can take any value between 0 and 1, even though 1− n is only
of the order 10−5 or smaller. Such zeroth-order effects cannot be accounted for by
perturbative scattering theory. Instead, we need to deal with refraction and reflection
from the onset, in the wave propagation equation. Accordingly, the SLD decomposi-
tion (1.29) takes the form

v(r) = v(z) + δv(r), (2.1) {{Edecompose_z}}{{Edecompose_z}}

and the unperturbed distorted wave equation (1.32) becomes{
∇2 + k(z)2

}
ψ(r) = 0. (2.2) {{EWaveZ}}{{EWaveZ}}

Below and above the sample, k(z) = const: in these regions, ψ(r) is a superposition of
plane waves. The exciting wavefunction is

ψe(r) = eik∥r∥+ik⊥ez, (2.3) {{Epsiminus}}{{Epsiminus}}

The subscripts ‖ and ⊥ refer to the sample xy plane. The wavevector components k∥
and k⊥ must fulfill

k(z)2 = k2
∥ + k2⊥. (2.4) {Epsiminus}
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k∥ = const. (2.5) {{Ekconst}}{{Ekconst}}

From here on, we abbreviate

κ := k⊥. (2.6) {Ekconst}

When the incident wave hits the sample, it is wholly or partly reflected. Therefore,
the full the solution of (2.2) in the half space of the radiation source is

ψ(r) = eik∥r∥+iκez +R eik∥r∥−iκez (2.7) {{Eref1}}{{Eref1}}

with a complex reflection coefficient R. The reflected flux is given by the reflectance
|R|2. In the opposite halfspace, the solution of (2.2) is simply

ψ(r) = T eik∥r∥+iκez (2.8) {{Etra1}}{{Etra1}}

with a complex transmission coefficient T . The transmitted flux is given by the trans-
mittance |T |2. As before, subscript e stands for the exciting wave in vacuum outside
the sample.

Within the sample, the wave equation (2.2) is solved by the factorization ansatz

ψ(r) = eik∥r∥ϕ(z). (2.9) {{Ekpar}}{{Ekpar}}

The vertical wavefunction ϕ(z) is governed by the one-dimensional wave equation{
∂2z + k(z)2 − k2∥

}
ϕ(z) = 0. (2.10) {{Ewavez}}{{Ewavez}}

As solution of a differential equation of second degree, ϕ(z) can be written as super-
position of a downward travelling wave ϕ−(z) and an upward travelling wave ϕ+(z).
Accordingly, the three-dimensional wavefunction can be written as

ψ(r) = ψ−(r) + ψ+(r). (2.11) {{Epsisumpm}}{{Epsisumpm}}

2.1.2 The four DWBA terms
{Sdwba4terms}

All the above holds not only for the incident wavefunction ψi, but also for the wave-
function ψf that is tracked back from a detector pixel towards the sample. Therefore
the scattering matrix element involves two incident and two final partial wavefunctions.
The resulting sum

〈ψi|δv|ψf〉 = 〈ψ−
i |δv|ψ−

f 〉+ 〈ψ−
i |δv|ψ+

f 〉+ 〈ψ+
i |δv|ψ−

f 〉+ 〈ψ+
i |δv|ψ+

f 〉 (2.12) {{Edwba4}}{{Edwba4}}

is depicted in Figure 2.1. It can be written in an obvious shorthand notation

〈ψi|δv|ψf〉 =
∑
±i

∑
±f

〈ψ±
i |δv|ψ±

f | . (2.13) {{Edwba}}{{Edwba}}
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vacuum / air

decorated layer

substrate term 1

〈ψi
−|δv|ψf

+〉

term 2

〈ψi
−|δv|ψf

−〉

term 3

〈ψi
+|δv|ψf

+〉

term 4

〈ψi
+|δv|ψf

−〉

Figure 2.1: The four terms in the DWBA scattering matrix element (2.13). Note that this is a
highly simplified visualization. In particular, it does not show multiple reflections of incoming
or scattered radiation, though they are properly accounted for by DWBA theory and by all
simulation software. {Fdwba4terms}

This equation contains the essence of the DWBA for GISAS, and is the base for all
scattering models implemented in BornAgain. Since 〈ψi|δv|ψf〉 appears as a squared
modulus in the differential cross section (1.36), the four terms of (2.13) can interfere
with each other, which adds to the complexity of GISAS patterns.

BornAgain supports multilayer samples with refractive index discontinuities at
layer interfaces. Conventions for layer numbers and interface coordinates are intro-
duced in Figure 2.2. A sample has N layers, including the semi-infinite bottom and
top layers. Numbering is from top to bottom, and from 0 to N − 1 as imposed by
the programming languages C++ and Python. Each layer l has a constant refractive
index nl and a constant wavenumber kl := Kvacnl. Any up- or downward travelling
solution of the wave equation shall be written as a sum over partial wavefunctions,

ψ±(r) =
∑
l

ψ±
l (r), (2.14) {{Epsipmsuml}}{{Epsipmsuml}}

with the requirement

ψ±
l (r) = 0 for r outside layer l. (2.15) {{Epsipmloutside}}{{Epsipmloutside}}

The DWBA matrix element (2.13) then takes the form

〈ψi|δv|ψf〉 =
∑
l

∑
±i

∑
±f

〈ψ±
il |δv|ψ

±
fl 〉 . (2.16) {{Edwbal}}{{Edwbal}}

2.1.3 DWBA for layers with constant mean SLD
{SStep}

We now specialize to the case that v(z) is a step function: within each layer, v(z) =: vl
is constant. Accordingly, within the layer, the directional neutron wavefunction ψ±

l

is a plane wave and factorizes as in (2.9). Its amplitude A±
l is determined recursively

by Fresnel’s transmission and reflection coefficients that are based on continuity con-
ditions at the layer interfaces. This will be elaborated in Section 2.1.5. The vertical
wavenumber is determined by (2.3) and (2.5),

κ±l = ±
√
k2l − k2∥. (2.17) {{Ekperpl}}{{Ekperpl}}

In the absence of absorption and above the critical angle, wavevectors are real so that
we can describe the beam in terms of a glancing angle

αl := arctan(κl/k∥). (2.18) {{Edef_alpha}}{{Edef_alpha}}
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layer N−1 substrate

zN−1

layer N−2
zN−2

·  ·  · · · ·

z2

layer 1
z0 = z1

layer 0 air/vacuum

z

Figure 2.2: Conventions for layer numbers and interface coordinates. A sample has N layers,
including the semi-infinite bottom and top layers. Layers are numbered from top to bottom.
The top vacuum (or air) layer (which extends to z → +∞) has number 0, the substrate
(extending to z → −∞) is layer N − 1. The parameter zl is the z coordinate of the top
interface of layer l, except for z0 which is the coordinate of the bottom interface of the air or
vacuum layer 0. {Fdefz}

Equivalently,

k∥ = Knl cosαl. (2.19) {{Ekplllncos}}{{Ekplllncos}}

Since k∥ is constant across layers, we have

nl cosαl = the same for all l, (2.20) {{ESnell}}{{ESnell}}

which is Snell’s refraction law. In general, however, the vertical wavenumber κl,
determined by kl and k∥ as per (2.3), can become imaginary (total reflection conditions)
or complex (absorbing layer). In these cases, glancing angles are no longer well defined,
and the geometric interpretation of ψl(r) less obvious. so that one has to fully rely on
the algebraic formalism.

With the indicator function

χl(r) :=

 1 if zl ≤ z ≤ zl+1,
0 otherwise,

(2.21) {{Echildef}}{{Echildef}}

the vertical wavefunction can be written

ϕ±l (z) = A±
l e

±iκl(z−zl)χl(z). (2.22) {{Ephizwj}}{{Ephizwj}}

The offset zl has been included in the phase factor for later convenience. See ?? for
the case of vanishing κ.

The DWBA transition matrix element (2.13) is

〈ψi|δv|ψf〉 =
∑
l

∑
±i

∑
±f

A±∗
il A

±
fl δvl(k

±
fl − k±

il ) (2.23) {{Edwba_ml0}}{{Edwba_ml0}}
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with the Fourier transform of the SLD restricted to layer l

δvl(q) :=

∫ zl−1

zl

dz

∫
d2r∥ e

iq rδv(r) =

∫
d3r eiq rδv(r)χl(z). (2.24) {{Echij}}{{Echij}}

To alleviate later calculations, we number the four DWBA terms from 1 to 4 as shown
in Fig. 2.1, and define the corresponding wavenumbers and amplitude factors and as

q1 := k+
f − k−

i , C1 := A−∗
i A+

f ,

q2 := k−
f − k−

i , C2 := A−∗
i A−

f ,

q3 := k+
f − k+

i , C3 := A+∗
i A+

f ,

q4 := k−
f − k+

i , C4 := A+∗
i A−

f .

(2.25) {{Eudef}}{{Eudef}}

Accordingly, we can write (2.23) as

〈ψi|δv|ψf〉 =
∑
l

∑
u

Cu
l δvl(q

u
l ). (2.26) {{Edwba_ml}}{{Edwba_ml}}

Since k∥ = const, all wavevectors qu
l have the same horizontal component q∥; they

differ only in their vertical component qul⊥.

2.1.4 Modifications for X-rays
{SmulayX}

We shall now translate the above results from unpolarized neutrons to X-rays. The
vectorial amplitude of the electromagnetic field will require nontrivial modifications.
In place of the factorization (2.9), we write

E(r) = eik∥rΦ(z). (2.27) {Edwba_ml}

In place of (2.22), the vertical wavefunction is

Φ±
l (z) = A±

l e
±iκ(z−zl)χl(z). (2.28)

The vectorial character of A±
wl will require changes in Sec. 2.1.5. For electromag-

netic radiation in nonmagnetic media, the boundary conditions at an interface with
normal n are [13, eq. 7.37]∑

±
ϵE± n = const, (2.29) {{EbcE1}}{{EbcE1}}

∑
±

E± × n = const, (2.30) {{EbcE2}}{{EbcE2}}

∑
±

k±
l ×E± = const. (2.31) {{EbcE3}}{{EbcE3}}

We will only consider the two polarization directions, conventionally designated as p
and s, defined in Figure 2.3. As some algebra on (2.29) to (2.31) would show, these are
principal axes, meaning that if both incoming fields E−

l−1 and E+
l are strictly polarized

BornAgain May 31, 2023 2:5



Fresnel coefficients|hyperpage
Transmission|hyperindexformat\see Fresnel coefficients
Reflection|hyperindexformat\seealso Fresnel coefficients

layer l−1

layer l

p polarization

k

E

s polarization

k

E
n

Figure 2.3: Conventions for polarization directions relative to a refracting interface: For p
polarization, the electric field vector E is parallel to the interface normal n; for s polarization, it
is perpendicular (senkrecht in German). In either case, E is perpendicular to the wavevector k. {Fsppol}

in either p or s direction, then the outgoing fields E+
l−1 and E−

l are polarized in the
same direction. Conversely, if the incoming fields are mixtures of p and s polarization,
then the outgoing fields will be, in general, mixed differently. Therefore if polarization
factors are quantitatively important in an experiment, one should strive to accurately
polarize the incident beam in p or s direction in order to avoid the extra complication
of variably mixed polarizations.

Further algebra on (2.29) to (2.31) replicates the reflection law that relates k−

and k+ and Snell’s law (2.20). Taking these for granted, we only retain equations that
are needed to determine the field amplitudes E±. For p polarization they yield(

k k

−κ/k κ/k

)(
E−

E+

)
= const, (2.32) {EbcE3}

and for s polarization(
1 1

−κ κ

)(
E−

E+

)
= const. (2.33)

The latter equation can be brought into the form (2.38). In consequence, s-polarized
X-rays are refracted and reflected in exactly the same ways as unpolarized neutrons.

For p polarization, …(TODO)

2.1.5 Wave amplitudes
{Sacrolay}

The plane-wave amplitudes A±
wl need to be computed recursively from layer to layer.

Since these computations are identical for incident and final waves, we omit the sub-
script w in the remainder of this section. At layer interfaces, the optical potential
changes discontinuously. From elementary quantum mechanics we know that piecewise
solutions of the Schrödinger equations must be connected such that the wavefunction
ϕ(r) and its first derivative ∇ϕ(r) evolve continuously.

To deal with the coordinate offsets introduced in (2.22), we introduce the function

dl := zl − zl+1, (2.34) {{Edldef}}{{Edldef}}
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Figure 2.4: The transfer matrix Ml connects the wavefunctions Φl, Φl−1 in adjacent layers. {Fboundary}

which is the thickness of layer l, except for l = 0, where the special definition of
z0 (Fig. 2.2) implies d0 = 0. We consider the interface between layers l and l − 1,
with l = 1, . . . , N − 1, as shown in Fig. 2.4. This interface has the vertical coordinate
zl = zl−1 − dl−1. Accordingly, the continuity conditions at the interface are

ϕl(zl) = ϕl−1(zl−1 − dl−1),

∂zϕl(zl) = ∂zϕl−1(zl−1 − dl−1).
(2.35) {{Econtcond}}{{Econtcond}}

We abbreviate

δl := eiκldl . (2.36) {{Ddell}}{{Ddell}}

Here and in the following, we will write the downward travelling transmitted and of
the upward travelling reflected amplitude as

tl := A−
l and rl := A+

l . (2.37) {Ddell}

For the plane waves (2.22), the continuity conditions (2.35) take the form

tl + rl = tl−1δl−1 + rl−1δ
−1
l−1,

−tlκl + rlκl = −tl−1δl−1κl−1 + rl−1δ
−1
l−1κl−1.

(2.38) {{Econt2}}{{Econt2}}

After some lines of linear algebra, we can rewrite this equation system as(
tl−1

rl−1

)
=Ml

(
tl

rl

)
(2.39) {{EcMc}}{{EcMc}}

with the transfer matrix1

Ml := ∆l−1Sl, (2.40) {{EMil}}{{EMil}}

which we write using the phase rotation matrix

∆l :=

(
δ−1
l 0

0 δl

)
(2.41) {{DmatD}}{{DmatD}}

1This approach is generally attributed to Abelès, who elaborated it in his thesis from 1949, published
1950. The usually cited paper [14] is no more than a short advertisement.
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and the refraction matrix

Sl :=
1

2

(
s+l s−l

s−l s+l

)
(2.42) {{DmatS}}{{DmatS}}

with coefficients

s±l := 1± κl/κl−1. (2.43) {{Dslpm}}{{Dslpm}}

Energy conservation can be easily verified for real-valued wave numbers. The vertical
flux is J = |Φ|2κ. Under the action of either ∆ or S,

κl(|tl|2 − |rl|2) = const for all l. (2.44) {{EConservation}}{{EConservation}}
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2.2 Solution of the split boundary problem
{Ssolvsplit}

2.2.1 The split boundary problem
{Ssplibou}

We now consider beam propagation through the entire multilayer sample, from the
semiinfinite top layer at l = 0 to the semiinfinite substrate at l = N − 1, which for
brevity shall be denoted by ν := N − 1.

Let us assume that the radiation source or sink is located at z > 0. Then in the top
layer, t0 = 1 is given by the incident or back-traced final plane wave. In the substrate,
tν = 0 because there is no radiation coming from z → −∞. This leaves us with two
unkown amplitudes, the overall coefficients of transmission tν and reflection r0. These
two unknowns are connected by a system of two linear equations,(

1

r0

)
=M

(
tν

0

)
(2.45) {{E1Ap}}{{E1Ap}}

with the matrix product

M :=M1 · · ·Mν =:

(
Mtt Mtr

Mrt Mrr

)
. (2.46) {{DM22}}{{DM22}}

To apply this and all the following to the scattered beam in transmission GISAS (sink
location z < 0), we just reverse the order of layers: (0, . . . , ν) 7→ (ν, . . . , 0).

Equation (2.45) is a split boundary problem because the given amplitudes t0 = 1,
rν = 0 appear on different sides of the equation. It can be reorganized as(

tν

r0

)
=W

(
1

0

)
(2.47) {{EWif}}{{EWif}}

with

W = W(M) :=

 Mtt
−1 Mtt

−1Mtr

MrtMtt
−1 (Mrr −MrtMtt

−1Mtr)

 . (2.48) {{EM2W}}{{EM2W}}

For later use, we note the inverse function

M = M(W ) =

(Wtt −WtrWrr
−1Wrt) WtrWrr

−1

Wrr
−1Wrt Wrr

−1

 . (2.49) {{EW2M}}{{EW2M}}

This formalism, originally developed for dynamic X-ray diffraction [15, 16], holds also
if the matrix components are not commutative under multiplication. This will allow
us later (for polarized neutrons, Chapter 4) to replace the scalar matrix components
by 2× 2 matrices.

From (2.47) and (2.48), we can read off

tν =M−1
tt and r0 =MrtM

−1
tt . (2.50) {{Etfri0J}}{{Etfri0J}}
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With this, the split boundary problem is formally solved. However, the matrix product
M (2.46) is numerically unstable [16, Sects. III, IV]. Therefore, the actual computation
of r0 and tν is done through a recursion (Sec. 2.2.2, TODO: polarized case).

If there is one single interface (ν = 1), then M = S1 yields the standard Fresnel
results, namely the transmitted amplitude

t1 =
2κ0

κ0 + κ1
(2.51) {{EtFresnel}}{{EtFresnel}}

and the reflected amplitude

r0 =
κ0 − κ1
κ0 + κ1

. (2.52) {{ErFresnel}}{{ErFresnel}}

2.2.2 Recursive solution
{Srt1}

As mentioned under (2.50), the matrix product M (2.46) is numerically unstable [16,
Sects. III, IV]. It is therefore preferable to solve the split boundary problem through
a recursion.2 Also, to compute scattering it is not sufficient to determine r0 and tν ;
the radiation amplitudes inside the inner layers are also needed. This is another good
reason to use a recursive algorithm.

In the polarized case, we will use a recursion based on the matrix inversion (2.49)
(TODO: confirm and insert link to section). In the scalar case, we use the much simpler
recursion of Parratt [17]. It is based on the insight that one does not need to compute
tl and rl separately, but only their ratio xl := rl/tl. Spelling out (2.39) with δ := δl−1

and s± := s±l , we obtain

xl−1 =
δs− + δs+xl

δ−1s+ + δ−1s−xl
= δ2

R+ xl
1 +Rxl

. (2.53) {{EParratt}}{{EParratt}}

The second expression involves the single-interface Fresnel reflection coefficient

R :=
s−

s+
=
κl−1 − κl
κl−1 + κl

. (2.54) {EParratt}

The recursion starts at the bottom with xν = 0.

2In early versions of BornAgain, we started from the bottom with t̃ν = 1, and normalized the final
result by division through t̃0. For opaque samples, this algorithm fails because of arithmetic overflow.
Through some versions of BornAgain, we used bisection to search for the bottom-most layer with finite
transmitted intensity. Then we noted that the simple recursion can be rescued by renormalizing after
each step. This turned out to be equivalent to the Parratt recursion [17].
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2.3 Implementation
{SimplML}

Last updated to reflect the actual code in May 2023.

2.3.1 Call chain

All simulations are run through the virtual function ISimulation::runComputation.
For classes ScatteringSimulation and OffspecSimulation,
most work is done in Compute::scattered_and_reflected,
for class SpecularSimulation in Compute::reflectedIntensity,
whereas class DepthprobeSimulation performs the computation directly in runComputation.
In function Compute::scattered_and_reflected,
incoming and outgoing fluxes are obtained from functions ReSample::fluxesIn and fluxesOut,
and stored in instances of class Fluxes, which incarnates OwningVector<IFlux>.
Following that, scattering is computed by functions Compute::dwbaContribution and
Compute::roughMultiLayerContribution.
Specular intensity is added to the appropriate detector pixel by function
Compute::gisasSpecularContribution.
In DepthprobeSimulation::runComputation, incoming fluxes are obtained from function
ReSample::fluxesIn.
In functions ReSample::fluxesIn and fluxesOut call either Compute::SpecularScalar::fluxes or
Compute::SpecularMagnetic::fluxes.
For specular simulations, function Compute::reflectedIntensity calls either
Compute::SpecularScalar::topLayerR or Compute::SpecularMagnetic::topLayerR. These
functions only return amplitudes reflected from the top of the sample, whereas the fluxes functions
called for scattering or depthprobe simulation compute up and down travelling amplitudes for each
sample layer.

Functions fluxes and topLayerR are implemented in files ComputeFluxScalar.cpp and ComputeFlux-
Magnetic.cpp, where they share some local functions.
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2.3.2 Scalar fluxes

The core numeric algorithm for the scalar flux computation is implemented in Com-
puteFluxScalar.cpp. Here the code is simplified by omitting roughness and transmis-
sion geometry. The code uses class Spinor, which has components u and v, here rep-
resenting transmitted and reflected amplitude. Interfaces are numbered as in Fig. 2.2.

1 std::vector<Spinor>
2 computeTR(SliceStack& slices, std::vector<cmplx>& kz)
3 {
4 // Parratt algorithm , pass 1:
5 // compute t/t factors and r/t ratios from bottom to top.
6 size_t N = slices.size();
7 std::vector<cmplx> tfactor(N-1); // transmission damping
8 std::vector<cmplx> ratio(N); // Parratt's x=r/t
9 ratio[N-1] = 0;
10 for (size_t i = N-1; i > 0; i--) {
11 cmplx slp = 1 + kz[i]/kz[i-1];
12 cmplx slm = 1 - kz[i]/kz[i-1];
13 cmplx delta = exp_I(kz[i-1] * slices[i-1].thicknessOr0());
14 cmplx f = delta / (slp + slm * ratio[i]);
15 tfactor[i-1] = 2 * f;
16 ratio[i-1] = delta * (slm + slp * ratio[i]) * f;
17 }
18
19 // Parrat algorithm , pass 2:
20 // compute r and t from top to bottom.
21 std::vector<Spinor> TR(N);
22 TR[0] = Spinor(1., ratio[0]);
23 for (size_t i = 1; i < N; ++i) {
24 TR[i].u = TR[i-1].u * tfactor[i-1]; // Spinor.u is t {Lti}
25 TR[i].v = ratio[i] * TR[i].u; // Spinor.v is r {Lri}
26 }
27
28 return TR;
29 }

The are two code blocks, each with a loop over interfaces. The first loop runs
from bottom l = ν to top l = 1. Variables slp and slm are the coefficients s±l of (2.43).
Variable delta is δl−1 as defined in (2.36). These are used for recursively computing
transmission damping factors

Fl−1 :=
2δl−1

s+l + s−l xl
(2.55)

and Parratt ratios (2.53)

xl−1 = δl−1
s−l + s+l xl

2
Fl−1 = δ2l−1

s−l + s+l xl

s+l + s−l xl
, (2.56)
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starting from the bottom value xν = 0. The second loop starts from the top where
t0 = 1, r0 = 0. From (2.39),

tl−1 = δ−1

(
s+

2
tl +

s−

2
rl

)
=
s+ + s−xl

2δ
tl = F−1

l−1tl. (2.57)

Bringing Fl−1 to the other side, we obtain code line 24. By definition, xl = rl/tl.
Bringing tl to the other side, we obtain code line 25.
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Multilayer|)

2.4 Vanishing vertical wavenumber, evanescent case etc
The above algorithm fails if κl−1 → 0 because Ml becomes singular.

TODO: revise the outcommented text in this section
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3 Scattering by rough interfaces

{SRough}
The SLD decomposition (2.1) leaves some freedom how to model interface roughness.
In the standard approach, v(z) always represents the average SLD at given height z.
Insofar, roughness has the same effect as an SLD gradient in a sample that is trans-
lationally invariant in the xy plane. The effect of graded SLD profiles upon reflection
and transmission of a multilayer sample is discussed in Sec. 3.1.

Additionally, the horizontal inhomogeneity of a rough interface gives rise to diffuse
scattering, discussed in Sec. 3.2.

By energy conservation, scattering reduces the reflected or/and transmitted in-
tensity. How to account for these losses in the R/T computation is an open research
question (TODO: link to section).

3.1 Propagation through graded interfaces
{Sgraded}

3.1.1 Interface with tanh profile
Graded interfaces have a smooth SLD profile, i.e. the function v(z) or κ2(z) evolves
continuously from one bulk value to the other. Among the SLD profiles that can
be solved analytically, the tanh (Fig. 3.1a) profile is particularly important. A good
summary of the solution can be found in Ch. 2.5 of Lekner [18].1 Whereas Lekner
only considers the electromagnetic case with a profile ϵ(z), we summarize the theory
in terms of κ = ϵK2 − k2∥.

We posit a profile

κ2(z) =
κ2a + κ2b

2
+
κ2b − κ2a

2
tanh

z

2τ
. (3.1)

The parameter τ is related to the roughness length σ of the BornAgain API through

πτ =
(π
2

)3/2
σ. (3.2)

For reference, we note the derivative

d

dz
κ2(z) =

κ2b − κ2a
4τ

cosh−2 z

2τ
. (3.3)

1He credits Eckart (1930) and Epstein (1930) for the solution. For a short summary, see also [19,
§ 25, exercise 3].
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Figure 3.1: (a) Functions tanh and tanhc. (b) Reflectivity reduction factor, obtained by
dividing (3.7) through the Fresnel reflectivity (2.51), as function of κaτ for ratios κb/κa of 0.1,
0.2, 0.4, 0.9, 1.1, 2, and 5. {Ftanhc}

The solution Φ(z) involves a hypergeometric function. Here we only note the reflection
coefficient [18, Eq. 2.88]

rab = e2iφ
sinhπτ(κa − κb)

sinhπτ(κa + κb)
. (3.4) {{ErTanh}}{{ErTanh}}

The phase φ is a real number as long as κa and κb are real. The transmission coefficient
tab is communicated in [20]. Using various properties of the Gamma and sinh functions,
one can verify flux conservation (2.44).

In the limit τ → 0, the phase factor φ in (3.4) goes to zero. For simplicity, we let
φ = 0 throughout. This approximation is equivalent to an adjustment of the interface
position zab by an amount that can be expected to be small compared to the interface
thickness τab.

To rewrite (3.4) in a form inspired by the Fresnel reflection coefficient (2.52), we
use the identity

sinh(x− y)

sinh(x+ y)
=

sinhx cosh y − sinh y coshx

sinhx cosh y + sinh y coshx
=

tanh y − tanhx

tanh y + tanhx
(3.5) {ErTanh}

with x := πτκa and y := πτκb. We write tanhc x := (tanhx)/x (Fig. 3.1a) and define
the roughness factor

Rab :=

√
tanhc πτκb
tanhc πτκa

. (3.6) {{ERba}}{{ERba}}

With all this, (3.4) can be cast as

rab =
R−1

ab κa −Rabκb

R−1
ab κa +Rabκb

, (3.7) {{ErTanh2}}{{ErTanh2}}

which has the form of the Fresnel reflection coefficient (2.52), except for the factors R−1
ab

and Rab. For τ → 0, these factors go to 1 so that (2.52) is fully recovered (Fig. 3.1b).

BornAgain May 31, 2023 3:2



The reduced rab of (3.7) can be obtained from the basic transfer matrix equation (2.39)
if the coefficients s± of (2.43) are replaced by2

s±a = R−1
ab ±Rabκb/κa. (3.8) {{EslpmTanh}}{{EslpmTanh}}

It is easily verified that the energy conservation (2.44) still holds.

3.1.2 Névot-Croce factor
The Névot-Croce factor is an exponential attenuation factor for the reflection coeffi-
cient:

r̃ab = rab e
−2kakbσ

2
ab , (3.9) {{ErNC}}{{ErNC}}

where rab is the Fresnel reflectivity (2.52) of a sharp interface. This form can be
obtained in various ways, with more or less hand-wavy arguments or approximations.
As e.g. used by Tolan it can be obtained by averaging the Parrat recursion equations
over a Gaussian material profile [21], equation 2.34. The same result can also be
obtained from formal perturbation theory, see e.g. [22] and references therein.

If the transmission coefficients are left unaltered, the resulting reduction in reflec-
tivity can be interpreted as a loss into diffuse scattering channels. This interpretation
is mentioned by Névot et al. [23].

More questionable is the simultaneous modification of the transmission coefficient.
Currently BornAgain uses

t̃ab = tab e
+(ka−kb)

2σ2/2, (3.10) {{EtNC}}{{EtNC}}

where tab is the Fresnel coefficient (2.51). This is the result obtained by Tolan [21,
Eq. 2.35], and is also given by de Boer [22] as a result from formal perturbation theory
in the limit of very small lateral correlation length. To obtain r̃ab and t̃ab from the
basic transfer matrix equation (2.39), we need to replace the coefficients s± of (2.43)
by

s±l = (1± κl−1/κl) exp(−(κl−1 ∓ κl)
2σ2/2), (3.11) {{EslpmNC}}{{EslpmNC}}

which is consistent with [24, Eq. 3.114].
However, the total reflected and transmitted flux κa|r̃ab|2 + κb|t̃ab|2, computed as

in (2.44), is greater than the incoming flux κa. This takes all credibility from (3.10)
and (3.11).

2Implemented in file ComputeFluxScalar.cpp, function transition [30may23].
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3.2 Scattering by a rough interface
{Sroughscatter}

Fragmentary. With contributions by Randolf Beerwerth and Walter Van Herck.3

3.2.1 Scattering in DWBA
{SroughDWBA}

In first-order distorted-wave Born approximation (DWBA), the scattering cross section
is given by

dσ

dΩ
=

∣∣∣∣∫ d3rΨ∗
i (r)V (r)Ψf(r)

∣∣∣∣2 =: |〈Ψi|V |Ψf〉r|
2 , (3.12) {{Ecross1}}{{Ecross1}}

where V (r) is the deviation from a reference potential V 0(z) that is used to compute
the distorted wave function Ψ for given incident and final far-field wave vectors ki,kf.
Since the distorted waves are governed by a mean potential that only depends on z,
they have the form

Ψ(r) = eik∥r∥Φ(z). (3.13) {Ecross1}

We introduce the scattering vector

q := kf − ki (3.14)

and the vertically integrated form factor

F (r∥) :=

∫
dzΦ∗

i (z)V (r)Φf(z) =: 〈Φi|V |Φf〉z (3.15) {{DFpa}}{{DFpa}}

so that we can write (3.12) as

dσ

dΩ
=

∫
d2r′∥

∫
d2r∥ e

iq∥(−r′∥+r∥)F ∗(r′∥)F (r∥). (3.16) {{Ecross11}}{{Ecross11}}

We recast (3.16) as a Fourier transform

dσ

dΩ
= A

∫
d2r∥ e

iq∥r∥ G(r∥) (3.17) {{Ecross12}}{{Ecross12}}

with the illuminated area A and the spatial correlation function

G(r∥) := A−1

∫
d2r′∥ F

∗(r′∥)F (r
′
∥ + r∥). (3.18) {{DGrpa}}{{DGrpa}}

3Ingested from ba-intern/theory on 29may23. Material was originally Roughness.tex, then ch. 4 in
Stratified.tex, then again in a separate document RoughScatter.tex.
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3.2.2 Random potential
{Srandvar}

To describe disordered interfaces, we assume that the potential depends on a random
variable u(r∥):

V (r) = V (z;u(r∥)). (3.19) {DGrpa}

The scattering cross section (3.12) must be replaced‘ by an average over the function
u(r∥),

dσ

dΩ
=
〈
|〈Ψi|V |Ψf〉r|

2
〉
{u}
. (3.20) {{Ecross2}}{{Ecross2}}

The subscripts r and {u} could help to distinguish the quantum-mechanical and the
statistical average. However, to avoid overloaded notation, we will omit them in the
following. Rather, we will always use big angular brackets to mark the statistical
average.

The Fourier transformed cross section can be maintained as in (3.17) provided
the spatial correlation function (3.18) is redefined as

G(r∥) := A−1

∫
d2r′∥

〈
F ∗(u(r′∥))F (u(r

′
∥ + r∥))

〉
. (3.21) {{D2Grpa}}{{D2Grpa}}

We now assume that the distribution of the u(r′∥) and u(r′∥ + r∥) depends only on the
distance r∥, not on the absolute location r′∥. Thereby, Equation (3.21) can be simplified
as

G(r∥) =
〈
F ∗(u(0))F (u(r∥))

〉
. (3.22) {{D2Grpa2}}{{D2Grpa2}}

The average involves a two-point correlation function P2(u, v; r∥):

G(r∥) =

∫
du

∫
dv P2(u, v; r∥)F

∗(u)F (v). (3.23) {D2Grpa2}

We anticipate that the limiting behavior of P2 is governed by the one-point distribution
function P1,

P2(u, v; r∥) →

{
P1(u)δ(u− v) for r∥ → 0,

P1(u)P1(v) for r∥ → ∞.
(3.24)

3.2.3 Covariance ex machina
{Scov}

In the pioneering paper by Sinha et al. [25] and in much of the subsequent literature
[26], the scattering cross section is defined differently from Equation (3.20), namely as
the covariance

dσ

dΩ

∣∣∣∣
cov

:= Cov{u}

(
〈Ψi|V |Ψf〉∗ , 〈Ψi|V |Ψf〉

)
≡
〈
|〈Ψi|V |Ψf〉|2

〉
−
∣∣∣〈 〈Ψi|V |Ψf〉

〉∣∣∣2 .
(3.25) {{DcrossCov}}{{DcrossCov}}
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To compensate for the negative extra term, there must be another cross section

dσ

dΩ

∣∣∣∣
T/R

:=
∣∣∣〈 〈Ψi|V |Ψf〉

〉∣∣∣2 (3.26) {{DcrossRT}}{{DcrossRT}}

= A

∫
d2r∥ e

iq∥r∥
〈
F (0)

〉∗〈
F (r∥)

〉
. (3.27) {DcrossRT}

The one-point averages are governed by the distribution function P1(u) that does not
depend on horizontal location. Hence

dσ

dΩ

∣∣∣∣
T/R

= A

∫
d2r∥ e

iq∥r∥
∣∣∣〈F〉∣∣∣2 (3.28) {{EcrossRT2}}{{EcrossRT2}}

= A(2π)2δ(q∥)
∣∣∣〈F〉∣∣∣2 . (3.29) {EcrossRT2}

This cross section is only nonzero if q∥ = 0. Elastic scattering must fulfill kf = ki. To-
gether, these conditions imply kiz = ±kfz, which is only satisfied by the direct (trans-
mitted) and by the specular (reflected) beam. For this reason, the cross section (3.26)
has been labelled “R/T”.

In the present context, we are only interested in scattering out of the transmitted
or reflected beam. Therefore we can ignore the R/T cross section (3.26), and substitute
the covariance (3.25) for the original cross section (3.12). We will see that this simplifies
computations. So we replace (3.17) by

dσ

dΩ
= A

∫
d2r∥ e

iq∥r∥ ∆G(r∥) (3.30) {{EcrossDG}}{{EcrossDG}}

with the modified correlation function (3.22)

∆G(r∥) := Cov
(
F ∗(u(0)), F (u(r∥)

)
(3.31) {{DDGrpa}}{{DDGrpa}}

=

∫
du

∫
dv∆P2(u, v; r∥)F

∗(u)F (v). (3.32) {DDGrpa}

The integral involves the distribution function

∆P2(u, v) := P2(u, v)− P1(u)P1(v). (3.33) {{DDP2}}{{DDP2}}

3.2.4 Sharp, rough interface
{Sinterface}

We consider a sharp transition between two different materials that takes place at a
rough interface located at height z = u(r∥). The scattering potential is the difference

V (r) = Vu(z;u(r∥))− V 0(z) (3.34) {{EVasdiff}}{{EVasdiff}}

between the actual potential for a given interface profile u

Vu(z;u) :=
Va + Vb

2
+
Va − Vb

2
sgn(z − u) (3.35) {EVasdiff}

BornAgain May 31, 2023 3:6



and the reference potential

V 0(z) :=
Va + Vb

2
+
Va − Vb

2
s0(z) (3.36)

that has been used to compute the vertical wave functions Φi,Φf, and therefore does
not contribute to scattering. The constants Va, Vb are the values of V 0 in the bulk above
and below the interface, denoted by layer indices a and b. The profile function s0(z)

has the limits s0(±∞) = ±1. We rewrite (3.34) as

V (r) = (Vb − Va)V(z;u(r∥)) (3.37)

with the dimensionless difference potential

V(z, u) := 1

2
[sgn(z − u)− s0(z)] . (3.38) {{DVddp}}{{DVddp}}

To get rid of a constant prefactor, we rewrite the correlation function (3.31) as

∆G(r∥) = |Vb − Va|2∆g(r∥) (3.39) {{E31Grpa}}{{E31Grpa}}

with the reduced correlation function

∆g(r∥) := Cov
(
f∗(u(0)), f(u(r∥))

)
=

∫
du

∫
dv∆P2(u, v; r∥) f

∗(u)f(v) (3.40) {{DDgrpa}}{{DDgrpa}}

and the reduced vertical form factor

f(u) :=

∫
dzΦ∗

i (z)V(z;u)Φf(z). (3.41) {{Dfpa}}{{Dfpa}}

3.2.5 Stepwise reference potential
{Sstepwise}

To facilitate computations, we approximate the smooth function s0(z) by a step func-
tion that takes J different values sj , with layer index j running from b = 1 to a = J .
We decompose the vertical wave function Φd (with d = i, f) as

Φd(z) =

J∑
j=1

[z ∈ Lj ]Φdj(z), (3.42) {Dfpa}

where Lj denotes the z interval occupied by layer j. Within one layer, the vertical
wave function consists of two exponentials with constant coefficients,

Φdj(z) = tdje
−iκdjz + rdje

iκdjz. (3.43) {{2EPhijz}}{{2EPhijz}}

To prepare for summation over downward and upward travelling waves, we rewrite
(3.43) as

Φdj(z) =
∑

α=−1,+1

cdjαe
iκdjαz (3.44) {{EPhidj}}{{EPhidj}}
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with cdj− := tdj , cdj+ := rdj , and κj± := ±κj . With the further definitions

qjαβ := κfjα − κijβ , (3.45)
Bjαβ := c∗ijαcfjβ , (3.46)

the wave function product in (3.41) becomes

Φ∗
i (z)Φf(z) =

∑
j

[z ∈ Lj ]

−,+∑
α

−,+∑
β

Bjαβe
iqjαβz. (3.47)

Diffuse scattering is governed by the dimensionless difference potential (3.38), which
can be written

V(z, u) := 1

2

[
sgn(z − u)− sj(z)

]
(3.48) {{EVddpstep}}{{EVddpstep}}

with a function j(z) that yields the layer index for a given vertical coordinate z.

3.2.6 One-step reference potential
{Sonestep}

We now choose a reference potential that has a single step at z = 0. In this case, the
profile function is just s0(z) = sgn(z). The dimensionless difference potential (3.38)
and (3.48) can be further simplified to take the form

V(z;u) = [0 < z < u]− [u < z < 0], (3.49) {EVddpstep}

with the Iverson-Knuth indicator bracket defined by [false] = 0 and [true] = 1. After
some rearrangement we find

f(u) =

b,a∑
j

[u ∈ Lj ]

−,+∑
α

−,+∑
β

Bjαβ

∫ u

0
dz eiqjαβz. (3.50) {{Efujab}}{{Efujab}}

From here on, it is convenient to work with a bundled index µ ≡ (α, β) that runs
from 0 to 3 and stands for the four possible combinations of ±±. With the further
abbreviation

Ajµ := Bjµ/qjµ, (3.51) {{DA}}{{DA}}

the result of carrying out the integral in (3.50) can be written as

f(u) =

b,a∑
j

[u ∈ Lj ]
±±∑
µ

Ajµ

i

(
eiqjµu − 1

)
. (3.52) {DA}

The reduced correlation function (3.40) is just the covariance of f∗(u(0)) and f(u(r∥)).
Only terms that involve both u(0) and u(r∥) contribute. This leaves us with

∆g(r∥) =

b,a∑
j

b,a∑
k

±±∑
µ

±±∑
ν

A∗
jµAkνDjµ,kν(r∥) (3.53) {{EDgrpa1}}{{EDgrpa1}}
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with

Djµ,kν(r∥) :=

∫
Lj

du

∫
Lk

dv∆P2(u, v; r∥) e
−iqjµu+iqkνv. (3.54) {{DD4}}{{DD4}}

If the vertical scattering wavenumbers q are real, then D∗
jµ,kν = Dkν,jµ. This allow us

to compute (3.53) as

∆g(r∥) =
∑
jµ

|Ajµ|2Djµ,jµ(r∥) +
∑

jµ<kν

2ReA∗
jµAkνDjµ,kν(r∥). (3.55) {{EDgrpa1c}}{{EDgrpa1c}}

The operator < under the second sum refers to some lexical ordering of the indices
that is used to preclude double counts.

3.2.7 Gaussian roughness
{SGauss}

From this point on, we assume a specific distribution function P2, namely a bivariate
normal distribution [27]. For brevity, we shall use the standard normal distribution

N1(X) :=
1√
2π

exp

(
−X

2

2

)
, (3.56) {EDgrpa1c}

and the standard bivariate normal distribution [27]

N2(X,Y ; ρ) :=
1

2π
√
1− ρ2

exp

[
−X

2 + Y 2 − 2ρXY

2(1− ρ2)

]
(3.57) {{DN2}}{{DN2}}

= N1

(
Y +X√
2(1 + ρ)

)
N1

(
Y −X√
2(1− ρ)

)
(3.58) {{EN2fac}}{{EN2fac}}

with ρ < 1. For ρ→ 1, one can see from (3.58) that N2(X,Y ) goes to N1(X)δ(X−Y ).
We now choose

P1(u) := N1

(u
σ

)
(3.59) {EN2fac}

and

P2(u, v; r∥) := N2

(u
σ
,
v

σ
; ρ(r∥)

)
. (3.60)

The standard deviation σ characterizes the vertical extent of interface fluctuations. It
is undifficult to verify that∫

dv P2(u, v; r∥) = P1(u) (3.61)

for whatever ρ(r∥). Physics dictates that 0 ≤ ρ(r∥) < 1 for r∥ 6= 0, and ρ(0) = 1. A
specific horizontal correlation function ρ(r∥) will be chosen later.

The covariance distribution function (3.33) is given by

∆P2(u, v; r∥) = ∆N2

(u
σ
,
v

σ
; ρ(r∥)

)
(3.62) {{EDP2}}{{EDP2}}
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with

∆N2(X,Y ; ρ) := N2(X,Y ; ρ)−N1(X)N1(Y ) (3.63)

= N1

(
Y +X√
2(1 + ρ)

)
N1

(
Y −X√
2(1− ρ)

)

−N1

(
Y +X√

2

)
N1

(
Y −X√

2

)
, (3.64) {{EDN2fac}}{{EDN2fac}}

which has the small ρ expansion

∆N2(X,Y ; ρ) = N1(X)N1(Y )
[
ρXY +O

(
ρ2
)]
. (3.65) {{EDN2lin}}{{EDN2lin}}

3.2.8 Analytic plane waves approximation
{SSinhaApprox}

The evaluation of the correlation function (3.53) can be simplified decisively if the
wave functions Φd (d = i, f) in the vertical form factor (3.15) are approximated by
two exponential functions with constant amplitudes. This amounts to omitting the
j dependences in (3.44). In the literature, it is typically achieved by analytic continu-
ation of the wavefunction of the upper layer, Φda, into the lower layer b, or vice versa.
According to Pynn [28, p. 605], this approximation is implicit in the reflectivity theory
of Névot and Croce [29]. Sinha et al. [25, following Eq. 4.37] introduced for the DWBA
computation of diffuse scattering. Holý et al. [26] suggest to compute the scattering
intensity twice, with Φda approximated by Φdb, and vice versa. The approximation is
valid if the two results agree within requested precision.

Under this assumption we can omit the layer index from B, q,A. The sums over
j, k in (3.53) become trivial, the integrals over u, v are no longer restricted to layers,
and the problem reduces to

∆g(r∥) =
±±∑
µ

±±∑
ν

A∗
µAν

∫
du

∫
dv∆P2(u, v; r∥) e

−iqµu+iqνv. (3.66) {{EDgrpaS1}}{{EDgrpaS1}}

With (3.62) and (3.64), the solution is straightforward [25, Eq. 4.42]:

∆g(r∥) =
±±∑
µ

±±∑
ν

A∗
µAν

[
eσ

2qµqνρ(r∥) − 1
]
e−σ2(q2µ+q2ν)/2. (3.67) {{EDgrpaS2}}{{EDgrpaS2}}

For small ρ, the difference in the bracket can be linearized in ρ. Recalling that A = B/q

(3.51), we obtain [25, Eq. 4.43]

∆g(r∥)
.
= ρ(r∥)σ

2
±±∑
µ

±±∑
ν

B∗
µBν e

−σ2(q2µ+q2ν)/2. (3.68) {{EDgrpalin}}{{EDgrpalin}}
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3.2.9 Refracted waves, linearized correlation
We now reconsider the problem of computing the correlation function (3.53) based on
wave functions that account for refraction and reflection by the mean interface, and
therefore are plane waves only within one layer. In other words, we proceed without
Sinha’s approximation of Section 3.2.8.

Instead, to make the problem computationally accessible, we use (3.65) to linearize
in ρ from the onset. So approximate (3.54) as

Djµ,kν(r∥)
.
= ρ(r∥)σ

2E∗
j (qjµ)Ek(qkν) (3.69) {{EDgrpa2}}{{EDgrpa2}}

with the shorthand

Ej(q) :=

∫
Lj

d
u

σ
N1

(u
σ

) u
σ
eiqu. (3.70) {EDgrpa2}

Recall that j and k take the values b, a. The layers cover the semiinfinite intervals
Lb = (−∞, 0) and La = (0,∞), hence

Ea(q) =

∫ ∞

0
dU N1(U)U eiqσU , Eb(q) = −Ea(−q). (3.71)

Use partial integration to obtain

Ea(q) =
1√
2π

+
iqσ

2
erfcx

(
−iqσ√

2

)
, (3.72)

Eb(q) = − 1√
2π

+
iqσ

2
erfcx

(
iqσ√
2

)
(3.73)

with the compensated complementary error function (function w(iz) of Abramowitz
and Stegun [30, 7.1.3])

erfcx(z) := ez
2erfc(z). (3.74)

If we make the additional assumption that B, q,A are layer independent, as in Sinha’s
plane-waves approximation, then it is straightforward to recover the linearized re-
sult (3.68) from the previous section.

3.2.10 Horizontal correlations
This is a verbatim copy of Sect. 5.6 from our reference paper [1], except for notes in
boldface or italics.

The reduction of reflected and transmitted intensity is described by the Névot-
Croce factor [29]. IsGISAXS supports this loss factor, but not the diffuse scattering.

In BornAgain, diffuse scattering and beam attenuation are computed consistently.
[Not yet! This needs urgently to be implemented.] The roughness model is
taken from Ref. [31]. The height h is assumed to be a Gaussian random variable. The
correlation function at in-plane distance R is (I:21)

C(R) := 〈h(0)h(R)〉 = σ2e−(R/ξ)2H . (3.75)
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This model has been introduced into the field of X-ray reflectivity by Sinha et al [25].
Compare their Eqns. 2.9 and 2.23.

The user needs to specify the amplitude σ, the correlation length ξ, and the Hurst
parameter H. The latter is restricted to 0 < H ≤ 1. According to Ref. [31], it defines
the fractal box dimension D = 3−H of the interface: The smaller H, the more jagged
the interface (see Fig. I:7). Again, the better reference is [25], and work cited therein.

If there are two or more interfaces, then their height profiles may be correlated.
Following again Ref. [31], this is specified through a vertical cross correlation length
ξ⊥ that governs the correlations between two interfaces j and k, (I:22)

〈hj(0)hk(R)〉 =
1

2

[
σk
σj
Cj(R) +

σj
σk
Ck(R)

]
e−|zj−zk|/ξ⊥ . (3.76)
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3.3 Literature review: reflectivity and scattering from
rough surfaces

{Slit}
Scattering from a rough surface has been studied first at a macroscopic level, for sound
and radar waves (see books in TUM OPAC; see references in [32]). For light scattering
literature, see Refs. 1–26 in [33].

Steyerl 1972 [32]: First detailed discussion of neutron reflection from rough
surfaces. Main application interest is total reflection in neutron guides. Unperturbed
potential is step function. Wave equation in integral form; Green’s functions, ascribed
to saddle point method, appear in Eqns. 15,16 without derivation; explicit expressions
for all four cases z, z′ ≶ 0 are given with some more computational details in [34,
Eqn. 29]. Compact and credible expressions for upward and downward scattering in
Eqns. 20,21. Result for reflected and transmitted intensity thoroughly analysed and
criticised by Pynn [28]: neglect of phase factor makes approximation irrelevant for
reflectometry.

Névot & Croce 1980 [29]: Experimental X-ray study. Highly cited. Attenu-
ation of the reflected beam described by the Névot-Croce factor [Eqn. 3]. Theoretical
section is hard to read; starts from previous results of Croce et al; claims to be self-
consistent (auto-cohérente, p. 764). The key results of this work are rederived in much
shorter, clearer, and more standard ways by Pynn [28] who also explicates which ap-
proximations were made.

Beckmann and Spizzichino 1987 [35]: Book about radar reflections; almost
entirely concerned with wavelengths shorter than local radius of curvature, irrelevant
for reflectometry [28].

Sinha et al 1988 [25]: Top-cited paper. Sects. II and III are in Born Approxima-
tion, with application e. g. to powders. Application to liquid interface. They consider
only single interfaces. Grazing incidence and DWBA come in Sect. IV. For qz ≥ qc, a
small-q expansion reproduces the Névot-Croce factor. For qz < qc, on the other hand,
|R| < 1 is not found: 1st-order DWBA violates the optical theorem; the 2nd order
would be needed, but is not worked out. Pynn [28, Eqn. 10] criticizes the forward
scattering term [25, Eqn. 4.12], which involves the wrong incoming eigenfunction (for
the plane instead of the rough surface).

Pynn 1992 [28]: A critical review of previous work, especially Steyerl [32], Névot
& Croce [29], and Sinha et al [25]. Névot & Croce got the reflectivity essentially right,
except for reflection coefficients smaller than 10−5 [p. 605]. Also discusses correlated
interfaces.

Holý & al 1993 [26]: Concerned with multilayer reflectivity and diffuse scat-
tering. Very readable summary and extension of Sinha theory. They write the per-
turbation Hamiltonian of a multilayer system as a sum of single-layer contributions.
This splits up into a sum of four terms, similar to the expression Walter uses. They
have only four terms as they assume that the fields are identical directly below and
above the interface. Walter drops this condition and hence gets twice the terms with
different averaging below and above the interface. As a consequence of writing the
Hamiltonian as a sum of single interface contributions, diffuse scattering leads to a
double sum with the covariances appearing. Here correlation models come in. They
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introduce two of them: one without and the second with vertical correlation.
Summarized and extended to periodic multilayers by Holý & Baumbach [36]. Holý

& al also contributed to the book [37]; in particular, chapter 11 could be interesting.
de Boer 1994 [38]: Purely theoretical description of specular reflectivity on

single rough interfaces. Second order DWBA calculations of the reflection and trans-
mission coefficients in the T -matrix formalism. The resulting expressions include the
lateral correlation and are shown to have the Névot-Croce factor as a limiting value for
small correlation length (i.e. negligible diffuse scattering). For large correlation length,
the Debye-Waller like factor is recovered, while for intermediate correlation length an
interpolation factor needs to be evaluated. This factor includes a two-dimensional
surface integral. For a suitably chosen correlation function, it can be reduced to a
one-dimensional integral which facilitates numeric evaluation.

de Boer & Leenaers 1996 [22]: Survey article that briefly summarizes results
from several other articles. Explains under which limiting conditions results are appli-
cable. Gives formulae of the Fresnel coefficients for both reflection and transmission
on a single interface. Névot-Croce recovered as limit of small correlation lengths, can
also serve for multilayer calculations. This limit corresponds to weak scattering and
can be compared to graded interfaces, i.e. the numerical approximation via Slicing
that completely neglects diffuse scattering. Mentions DWBA leading to intensities
greater than unity below the critical angle, introduce Rayleigh method to circumvent
this. This leads to another expression for the Fresnel coefficients for large correlation
lengths, that can also be applied to multilayers.

Introduce an expression for the Fresnel coefficients for intermediate correlation
lengths, that relates to the lateral correlation function. Only approximately applicable
to multilayers, give reference to other 1996 paper [39].

Suggest interpolation approach to treat the fields in the vicinity of an interface.
Suggest also other starting points for the perturbative approach, namely to use

already corrected Fresnel coefficients or graded interfaces. Here, they specifically men-
tion the tanh profile as implemented in BornAgain.

Other potentially interesting papers from the same author: [40] [38]
The lateral correlation function implemented in BornAgain is taken from the

paper [41].
de Boer 1996 [39]: Deals with multilayers and considers the effects of roughness

in both specular reflectivity and diffuse scattering. Employs the T -matrix formalism to
compute corrections in the DWBA up to second order, rather hard to understand and
result not easily usable (for me, rb). Uses flat interfaces as the starting point for per-
turbation theory in Section II and graded interfaces in Section III. The latter is rather
vague and hard to grasp. Results are presented, dominantly for x-ray fluorescence.

Concludes that as a starting point for the DWBA graded interfaces should be
used, if both the reflectivity as well as the roughness are reasonably large. Suggests
an interpolation method for the fields as a starting point for the DWBA, as the field
obtained from Névot-Croce factors are wrong in the vicinity of interfaces.

Claims that the second-order term for diffuse scattering is generally negligible,
except when the reflectivity is large as well as for large lateral correlation length and
roughness. For specular reflection, mentions the first and second order contribution to
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be of the same order in the roughness and is hence only negligible for small roughnesses.
However, stresses that the DWBA is only valid for small roughness values or far above
the critical wave vector. Their way of extrapolating [38] the results is only valid for
single interfaces or very large perpendicular correlation.

Also mentions that he is not aware of any samples, where the second order con-
tribution has to be considered and that the theory is completely untested.

Caticha 1995 [42]: Studies graded interface with roughness.
Rauscher et al 1995 [43]: Combine the roughness theory of Sinha et al [25]

with bulk density fluctuations for different geometries, thereby specializing the generic
formalism of Dietrich and Haase [44].

Ogura & Takahashi 1996 [45]: Scattering and reflection from a random sur-
face in the language of mathematical physics, using Itô stochastic functionals. The
surface has 100% reflectance (Eqns. 3.9–10), so they miss the most difficult aspects of
the problem. Possibly a starting base for collaboration with mathematical physicists;
otherwise without practical value for us.

Toperverg et al 2000 [46]: A short note on the optical theorem that ensures
energy conservation under reflection, transmission and scattering. The only cited lit-
erature is Sinha et al 1988 [25] and de Boer 1994–96 [38, 41, 39]. For second-order
DWBA they refer to a preprint by Toperverg et al 1997 (request pending). This paper
drew our attention to the optical theorem, but is most probably made obsolete by
other publications that work out more details.

Fuji 2010: [47]: Seems to be the initial claim, that the Parrat formalism as
it is currently used with roughness included in the Fresnel coefficients assumes flux
conservation and hence cannot account for losses due to roughness. Detailed derivation
of a modified Parrat formula that contains both Fresnel r and t coefficients. Gives
examples where unphysically deep fringes are removed by their new formula. The
same example does indeed seem to show weird behavior that depending on the amount
of roughness deep minima change their position.

Fuji 2013: [48]: They derive (short) a different version of the the Parrat recur-
sion which does not imply conservation of flux. The claim is that this reduces deep
unphysical minima in Kissieg fringes when roughness is added.

Fujii 2014: [49]: Presents a modified version of the Parrat formula, that ex-
plicitly depends on the Fresnel transmission coefficients. If conservation of the flux is
imposed, his formula reduces to the well-known Parrat formula, where only the Fres-
nel reflection coefficient is present. More mathematical derivation of the approach is
presented in [48]. Numerical results are presented for an example, where the author
shows that the usual formula yields very good results for roughness parameters that do
not agree with independent experimental results (TEM). His modified formula yields
good agreement with the independently verified roughness parameters. The applied
transmission coefficients are given without much explanation, but the given expression
kind of resembles the expressions given by Tolan [21] for the large correlation length
limit.

Fujii 2015: [50]: Computes effective roughness factors, where the lateral corre-
lation is considered. Obtains an expression that again resembles equations (2.40) and
(2.41) in the book by Tolan[21], however, with an effective roughness. Claims good
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agreement with AFM measurements.
Chukhovskii 2011 & 2012 [51, 52]: Claims that DWBA is inapplicable for

large roughness rms σ. As an alternative, develops self-consistent wave approximation
(SCWA). Starting from a Green function [51, Eqn. 4], the derivation of the scattering
cross section [51, Eqn. 20] and of the reflected intensity [51, Eqn. 19] looks relatively
straightforward. Subsequent averages of random functions for the standard Gaussian
surface model, however, lead to very long expressions [51, Eqns. 22,23]. The optical
theorem is only satisfied in the limit of large surface correlation lengths (kξϑ2 � 1)
[52].

TODO https://doi.org/10.1107/S2053273315016666 (2015)
TODO https://www.nature.com/articles/s41598-020-68326-2 (2020)
Chukhovskii & Roshchin 2015 [53]: Yet another alternative to DWBA: ex-

pansion in q-eigenfunctions of the plane-surface problem.
Maruyama, Yamazaki & Soyama 2018 [54]: Conference proceeding, where

the authors present actual computational results applying the theory from de Boer
[38, 39], i.e. DWBA in second order to the specular reflectivity of multilayers. Com-
parison to the Névot-Croce factor, as well as contributions of the first and second order
perturbation contribution. Their chosen example is very close to the Ti-Ni multilayer
sample that was often considered by BA team members so far and could serve as an
interesting test case for testing and comparing numerical results.

Hafner 2019 [55]: Contains simulations and experimental data of off-specular
simulations where the contributions from specular reflection and scattering are put on
a common scale. Cross sections are incoherently added, with geometric corrections
arising from detector resolution and spread in angles/wavelengths. Mentions approxi-
mation valid for small scattered intensities. Summarizes statistical treatment of rough
interfaces, similar correlation approach as in BornAgain.
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Neutron!polarized|hyperpage
Polarization!neutron|hyperpage

4 Polarized wave propagation and scattering

{SPol}
In this chapter, we generalize our treatment of wave propagation and grazing-incidence
small-angle scattering to polarized neutrons. We therefore need to study spinor wave
equations, in contrast to the scalar theory of the previous chapter.

4.1 Polarized neutrons
{Snpol}

This section was outcommented in the “Physics Manual”. Restored 29may23.

4.1.1 Wave equation and propagation within one layer
To allow for polarization-dependent interactions, we replace the squared index of re-
fraction n2 by 1 + χ, where χ is a 2 × 2 susceptibility matrix. The wave equation ??
for layer l becomes

(∆ +K2 +K2χ
l
)ψ(r) = 0, (4.1) {{Ewaveqp}}{{Ewaveqp}}

where ψ(r) is a two-component spinor wavefunction, with components ψ↑(r) and ψ↓(r).
At interfaces between layers, both spinor components of ψ(r) and ∇ψ(r) must evolve
continuously.

The reasons for the factorization (2.9) still apply, and so we can write

ψ(r) = ψ(z)eik∥r∥ . (4.2) {{Ewave3p}}{{Ewave3p}}

As before, k∥ is constant across layers. The wave equation (4.1) reduces to(
∂2z +K2 +K2χ

l
− k2∥

)
ψ(z) = 0. (4.3) {{Ewavezp}}{{Ewavezp}}

We abbreviate

H
l
:= K2(1 + χ

l
)− k2∥ (4.4) {Ewavezp}

so that the wave equation becomes simply(
∂2z +H

l

)
ψ(z) = 0. (4.5) {{Ewaveqp2}}{{Ewaveqp2}}

The solution is

ψ
l
(z) =

2∑
k=1

xlk

(
αlke

iplk(z−zk) + βlke
−iplk(z−zk)

)
, (4.6) {{Epsizp}}{{Epsizp}}
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where the xlk are eigenvectors of H
l

with eigenvalues p2lk:(
−p2lk +H

l

)
xlk = 0 for l = 1, 2. (4.7) {Epsizp}

In a reproducible algorithm, the eigenvectors xlk must be chosen according to some
arbitrary normalization rule, for instance

|xlk| = 1, xil↑ real and nonnegative. (4.8)

Similarly, a rule is needed how to handle the case of one degenerate eigenvalue, which
includes in particular the case of scalar interactions.

4.1.2 Wave propagation across layers

Generalizing Section 2.1.5, we introduce the coefficient vector

cl := (αl1, αl2, βl1, βl2)
T. (4.9)

To match solutions for neighboring layers, continuity is requested for both spinorial
components of ψ and ∇ψ. We have at the bottom of layer l

Flcl = Fl+1Dl+1cl+1, (4.10) {{EFcFDcp}}{{EFcFDcp}}

where the matrices are

Fl :=


xi1↑ xi2↑ xi1↑ xi2↑

xi1↓ xi2↓ xi1↓ xi2↓

xi1↑pl1 xi2↑pl2 −xi1↑pl1 −xi2↑pl2
xi1↓pl1 xi2↓pl2 −xi1↓pl1 −xi2↓pl2

 (4.11) {EFcFDcp}

and

Dl := diag(δl1, δl2, δ∗l1, δ∗l2) (4.12)

with the phase factor

δlk := eiplkdk . (4.13)

Note that matrix Fl has the block form

Fl =

 x
l

x
l

x
l
P

l
−x

l
P

l

 = x
l
·

 1 1

P
l

−P
l

 , (4.14)

with

x
l
:= (xl1, xl2) , P

l
:= diag (pl1, pl2) . (4.15)
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This facilitates the computation of the inverse

F−1
l =

1

2

 1 P−1
l

1 −P−1
l

 · x−1
l
, (4.16)

which is needed for the transfer matrix Ml, defined as in (2.40). With the new meaning
of cl and Ml, the recursion (2.39) and the explicit solution ?? hold as derived above.
To resolve ?? for the reflected amplitudes α0l as function of the incident amplitudes
β0l, we choose the notations

αl :=

(
αl1

αl2

)
, β

l
:=

(
βl1

βl2

)
, M :=M1...MN =:

(
m

11
m

12

m
21

m
22

)
, (4.17)

where the m
lk

are 2× 2 matrices. Eq. ?? then takes the form(
α0

β
0

)
=

(
m

11
m

12

m
21

m
22

)(
0

β
N

)
, (4.18)

which immediately yields

α0 = m
12
m−1

22
β
0
. (4.19)
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4.2 From old document “Reflectivity”
By choosing the convention that the plane of a multilayer lies within the x-y plane, and
using the appropriate boundary conditions, the three-dimensional Helmholtz equation
reduced to the usual one-dimensional Helmholtz equation ĤΨ = 0. Following [56] and
[57], the Hamiltonian for a magnetized layer m in a sample is given by

Ĥm =
∂2

∂z2
+ k20 −

2πℏ2

mn

(
bN + bMσ⃗ · b⃗

)
=

∂2

∂z2
+ k20 − 4π

(
ρN + ρM σ⃗ · b⃗

)
︸ ︷︷ ︸

ρ

=
∂2

∂z2
+ p2m

(4.20)

where b⃗ is the unit vector of the magnetic field. Within this convention, the interaction
is parametrized by the usual nuclear Sld ρN and the magnetic Sld ρM , which are both
scalar quantities. For convenience, we then introduce the operator p̂m in layer m

p̂m :=
1

2

(
(λ+ + λ−) + (λ+ − λ−) σ⃗ · b⃗

)
, (4.21)

with the eigenvalues given by

λ± =
√
k20 − 4π (ρN ∓ ρM) . (4.22)

The ansatz for the wave function is then

|Ψm (z)〉 = Ŝm (z) |Ψm(0)〉 . (4.23)

Here, the propagator Ŝ is a 2× 2 matrix given by the expression

Ŝ (z) = exp ip̂m (z − zm−1)t̂m + exp−ip̂m (z − zm−1)r̂m , (4.24)

and it propagates the wave function |Ψm(0)〉 at the bottom of layer m to position z.
This notation is identical to the one introduced by [56] and [57] and t̂m and r̂m are
operators that can be written as 2× 2 matrices.

4.2.1 Transfer Matrix Method
For our purpose, it is instead more convenient to consider the two spinors tm =

t̂m |Ψm(0)〉 and rm = r̂m |Ψm(0)〉. Analogously to the scalar case, these two spinors can
be combined into a four-component vector

(
tTm, r

T
m

)T , so that the transition between
interfaces m and m+ 1 can be described by the 4× 4 transfer matrix {eq:interface_transfer_matrix}(

tm

rm

)
=

1

2

(
δ−1 0

0 δ

)(
1 + p−1

m pm+1 1− p−1
m pm+1

1− p−1
m pm+1 1 + p−1

m pm+1

)(
tm+1

rm+1

)
(4.25a)

=
1

2

(
δ−1 0

0 δ

)(
1 + P 1− P

1− P 1 + P

)(
tm+1

rm+1

)
. (4.25b)

BornAgain May 31, 2023 4:4



Writing the reflectometry problem in this way for a multilayer that contains magnetic
materials, allows to introduce structural roughness that is consistent with the scalar
implementation in BornAgain. Due to the spinorial description of the amplitudes, the
transfer matrix is now a 4× 4 matrix. Analogously to the scalar case, we have defined
the phase factor

δ = exp ipmdm , (4.26) {{eq:polarized_transfer_matrix_phase_factor}}{{eq:polarized_transfer_matrix_phase_factor}}

however, it is now a 2 × 2 matrix. In order to fully utilized the consistency with the
scalar implementation we define that ratio P = p−1

m pm+1, which also turns into a 2

matrix.

4.2.1.1 Derivation

We consider a layer interface between layers m + 1 and m at position zm. Therefore,
we have zm − zm−1 = dm, the thickness of layer m.

We start from the ansatz for the wave functions in layers m and m+ 1

Ψm (z) = exp ip̂m (z − zm−1)tm + exp−p̂m (z − zm−1)rm , (4.27)
Ψm+1 (z) = exp ip̂m+1 (z − zm)tm+1 + exp−ipm (z − zm)rm+1 . (4.28)

Its derivatives are then given by
dΨm

dz
= ipm exp ipm (z − zm−1)tm − ipm exp−ipm (z − zm−1)rm (4.29)

dΨm+1

dz
= ipm+1 exp ipm+1 (z − zm)tm+1 − ipm+1 exp−ipm+1 (z − zm)rm+1

(4.30)

For convenience, we define φm := pmdm and obtain from the boundary conditions
Ψm (zm) = Ψm+1 (zm) and dΨm/dz (zm) = dΨm+1/dz (zm)

exp iφmtm + exp−iφmrm = tm+1 + rm+1 (4.31) {{eq:boundary1}}{{eq:boundary1}}

pm exp iφmtm − pm exp−iφmrm = pm+1tm+1 − pm+1rm+1 (4.32) {{eq:boundary2}}{{eq:boundary2}}

By multiplying (4.32) from the left with p−1
m , we find

exp iφmtm − exp−iφmrm = p−1
m pm+1tm+1 − p−1

m pm+1rm+1 . (4.33) {{eq:boundary2b}}{{eq:boundary2b}}

Now from taking (4.31) + (4.33) and (4.31) - (4.33), we find

2 exp iφmtm =
(
1 + p−1

m pm+1

)
tm+1 +

(
1− p−1

m pm+1

)
rm+1 (4.34)

2 exp−iφmrm =
(
1− p−1

m pm+1

)
tm+1 +

(
1 + p−1

m pm+1

)
rm+1 (4.35)

Writing this as a single four-element vector yields(
tm

rm

)
=

1

2

(
exp−iφm 0

0 exp iφm

)((
1 + p−1

m pm+1

)
)tm+1 +

(
1− p−1

m pm+1

)
rm+1(

1− p−1
m pm+1

)
tm+1 +

(
1 + p−1

m pm+1

)
rm+1

)
.

(4.36)

This is the desired representation of the transfer matrix given in equations (4.25).
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4.2.2 Parratt Formalism

Xm = r̂mt̂
−1
m (4.37)

Xm = exp ipmdmX̃m exp ipmdm (4.38)

X̃m =
1− p−1

m pm+1 +
(
1 + p−1

m pm+1

)
Xm+1

1 + p−1
m pm+1 +

(
1− p−1

m pm+1

)
Xm+1

(4.39)

tm+1 =

(
1 + X̃m

)
exp ipmdm

1 +Xm+1
tm (4.40)

• Kentzinger et al. introduce structural (nuclear) roughness into this formalism by
adding Nevót-Croce factors to the operator

(
1− p−1

m pm+1

)
• [57] mention the numerical stability of this algorithm due to the strictly positive

imaginary parts in the phase factors

• Here Xm is a 2× 2 operator
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4.3 From old document “Stratified”

4.3.1 Wave equation and operator p
{Sopp}

In the presence of magnetic interaction, the potential (1.28) has the z-dependent av-
erage

v(z) = vnucl(z) + vmagn(z)eBσ, (4.41)

which involves the nuclear potential vnucl(r), the magnitude of the magnetic potential,

vmagn(r) =
mµ

2πℏ2
B(r), (4.42)

the neutron mass m, the neutron magnetic moment µ, the magnetic induction B (with
magnitude B and direction unit vector eB), and the Pauli vector σ. Spinors, like the
field Φ(z), shall be underlined; 2 × 2 matrices that operate on spinors are underlined
twice.

We redefine the vertical wave number κ, introduced in ??, to account only for the
nuclear potential,

κ2(z) := k2⊥(z) := K2 − k2∥ − 4πvnucl(z), (4.43) {{EkperpP}}{{EkperpP}}

whereas the wave equation ?? shall be replaced by(
∂2z + p2(z)

)
Φ(z) = 0 (4.44) {{EwzP}}{{EwzP}}

with p2 := κ2 − 4πvmagn(z)eBσ. With [19, § 55, Exercice 1, p. 198], we find the
operator1

p(z) =
√
p2 =

1

2

[
(λ+ + λ−) + (λ+ − λ−)eBσ

]
, (4.45) {{EPauliRep}}{{EPauliRep}}

expressed through its eigenvalues

λ±(z) :=
√
κ2(z)∓ 4πvmagn(z). (4.46) {EPauliRep}

For future reference, we note the inverse operator2

p−1(z) :=
1

2λ+λ−

[
(λ+ + λ−)− (λ+ − λ−)eBσ

]
. (4.47)

1Implemented in MatrixRTCoefficients::computeP().
2Implemented in MatrixRTCoefficients::computeInverseP().
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4.3.2 Solution for stratified samples
{Sstrapo}

We consider a stratified sample where both vnucl(z) and B(r) are constant within one
layer. The vertical wavefunction is then given by the spinor analog of ??. Within
layer j, the wavefunction is

Φj(z) = e
−i(z−zj)pj

tj + e
i(z−zj)pj

rj (4.48) {{EPhijP}}{{EPhijP}}

with constant spinors tj , rj . The continuity conditions at the interface of layers a and
b := a+ 1 are analog to (2.35). In full analogy with (4.49), they can be resolved as

(
ta

ra

)
= Mab

(
tb

rb

)
. (4.49) {{EcMcP}}{{EcMcP}}

The double wavey underline shall indicate that the transfer matrix is now of dimension
4× 4. It is made of 2× 2 blocks that consist of 2× 2 matrices acting in spin space. As
in ??, it can be written as a product

Mab = Da Sab. (4.50) {{EMDSP}}{{EMDSP}}

The refraction matrix

Sab :=
1

2

(1 + Pab) (1− Pab)

(1− Pab) (1 + Pab)

 (4.51) {{ESabP}}{{ESabP}}

involves

Pab := pa
−1 pb. (4.52) {ESabP}

The propagation matrix

Da :=

δa−1 0

0 δa

 (4.53)

contains the phase-shift matrix

δj := e
idjpj (4.54) {{EdeltaP}}{{EdeltaP}}

that generalizes ??.
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4.3.3 Evaluation of the phase factors
{Sphase}

To make our implementation3 transparent, let us explain the evaluation of the phase-
shift matrix (4.54) in some detail. The matrix eBσ has the eigenvalues ±1 and the
normalized eigenvectors

v+ =
1√

2(1 + ez)

(
1 + ez

ex + iey

)
, v− =

1√
2(1 + ez)

(
−ex + iey

1 + ez

)
. (4.55) {{Ev1v2}}{{Ev1v2}}

For readability, we have omitted the subscript B from the components of eB. The ma-
trix p has the eigenvalues λ±, and the same eigenvectors (4.55) as eBσ. We introduce
the eigenvector matrix

Q :=
(
v+, v−

)
. (4.56) {Ev1v2}

Then p has the eigenvalue decomposition

p = Q

(
λ+ 0

0 λ−

)
Q†, (4.57)

and the phase-shift matrix (4.54) can be written

δ = Q

(
eidλ+ 0

0 eidλ−

)
Q†. (4.58) {{EdP2}}{{EdP2}}

In the case B = 0, we have λ+ = λ−, which has for consequence that (4.58) holds
for whatever direction vector eB; the simplest choice is eB(B=0) := ẑ so that Q = 1.

4.3.4 The split boundary problem
{SsplibouP}

A numerically stable recursive solution of the split boundary problem for polarized
radiation has been proposed in [15], and summarized in notation closer to ours in [16].
Their argument can be further simplified as follows.

SCALAR CASE:
We consider layers a, b := a+1, ν. The transfer matrix (2.46) obeys the recursion

Maν =MabMbν . (4.59) {EdP2}

With the conversion functions (2.48) and (2.49), we can derive a recursion for W :

Waν = W (MabM (Wbν)) . (4.60) {{EWrecu}}{{EWrecu}}

The per-layer transfer matrices Mab are given; the Waν shall be determined for a from
ν−1 to 0.

3In MatrixRTCoefficients::computeDeltaMatrix
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Once we have W0ν , we can use(
tν

r0

)
=W0ν

(
1

0

)
(4.61) {{Ert_backward}}{{Ert_backward}}

to compute the reflected amplitude r0 in the top (air/vacuum) layer. This backward
computation must then be followed by a forward computation of(

ta

ra

)
=M0a

−1

(
1

r0

)
. (4.62) {{Ert_forward}}{{Ert_forward}}

THE FOLLOWING WAS OUTCOMMENTED:
However, determining the Waν is not a goal in itself; we shall only evaluate them

insofar as needed for computing Ultimately, we want to apply (4.63) to layers i = 0,
f = ν, with rν = 0. Therefore, we only need to derive the tt and rt components of W0ν ,
whereas the tr and rr components are irrelevant. It turns out that this also holds for
the inner terms of the recursion (4.60): we only need the tt and rt components of the
intermediate W0a.

NOW THE POLARIZED CASE
THE FOLLOWING WAS OUTCOMMENTED:
The homogeneous linear equation (4.49) can be reorganized as(
tf

ri

)
= Wif

(
ti

rf

)
(4.63) {{EcWcP}}{{EcWcP}}

for whatever layers j, k. Following [16], we write matrix components as

W =:

W tt W tr

W rt W rr

 , (4.64) {EcWcP}

and similarly for matrix M of (4.49). Combining (4.49) and (4.63), we can express W
as function of M,

W (M) =

 M tt−1
M tt−1

M tr

M rtM tt−1
(M rr −M rtM tt−1

M tr)

 , (4.65) {{EM2Wpol}}{{EM2Wpol}}

and conversely, M as function of W

M (W) =??. (4.66) {{EW2Mpol}}{{EW2Mpol}}

Now consider layers 0, a, b := a+ 1. The transfer matrix obeys the recursion

M0b = M0aMab. (4.67) {EW2Mpol}

With the conversions (4.65) and (4.66), we can derive a recursion for W:

W0b = W (M (W0a) Mab) . (4.68) {{EWrecupo}}{{EWrecupo}}

Ultimately, we want to apply (4.63) to layers i = 0, f = ν, with rν = 0. Therefore,
we only need to derive the tt and rt components of W0ν , whereas the tr and rr

components are irrelevant. It turns out that this also holds for the inner terms of the
recursion (4.68): we only need the tt and rt components of the intermediate W0a.
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4.4 From old document “PolarizedImplementation”

4.4.1 Transfer Matrix

For a more detailed description of polarized reflectometry, we refer to the document
Summary Theory of Reflectivity in theory/reflectivity.pdf.

The amplitudes are stored in four-component vectors that are written as
(
tm, rm

)T
.

Both of these entries represent again a two-component spinor that describes the po-
larization state of the transmitted and reflected components.

Throughout our implementation, we apply the following representation of the
polarized transfer matrix:(

ta

ra

)
=

1

2

(
δ−1
a 0

0 δa

)(
1 + p−1

a pb 1− p−1
a pb

1− p−1
a pb 1 + p−1

a pb

)
︸ ︷︷ ︸

=:M⅁

(
tb

rb

)
(4.69) {{eq:interface_transfer_matrix_re}}{{eq:interface_transfer_matrix_re}}

=
1

2

(
δ−1
a 0

0 δa

)1 + Pab 1− Pab

1− Pab 1 + Pab

(tb
rb

)
, (4.70) {eq:interface_transfer_matrix_re}

with the phase factor

δj := exp idjpj . (4.71) {{eq:transfer_matrix_phase_factor}}{{eq:transfer_matrix_phase_factor}}

and the ratio of the moments Pab := pa
−1pb, both of which are 2 × 2 matrices in the

polarized case. This representation is consistent with the formulation in [56] and [57],
where the transfer matrix representation is derived from the chosen ansatz for the wave
functions. See theory/reflectivity.pdf for a derivation.

The transfer matrix M⅁ for interface a is a product of two submatrices M⅁ =

D⅁S⅁. D⅁ propagates the amplitudes from the bottom of a layer of constant material
to its top and the matrix S⅁ describes the interface between layers a and b = a+ 1.

The amplitudes on top of the multilayer stack can then be computed by(
t0

r0

)
=

N−1∏
a=0

M⅁ ·

(
tN

rN

)
, (4.72) {{eq:total_transfer_matrix}}{{eq:total_transfer_matrix}}

where tN and rN are two-component spinors that contain the amplitudes at the bottom
of the sample

4.4.2 Intensity Analysis
{sec:intensity_analysis}

The wave function in the ambient material is given by

Φ0 (z) = exp ip0t0︸ ︷︷ ︸
Φi(z)

+exp−ip0r0︸ ︷︷ ︸
Φr(z)

. (4.73) {eq:total_transfer_matrix}
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Here Φi is the incoming wave in a given polarization state t0 and Φr is the reflected
wave. The intensity measured on a detector is without polarization analysis given by

IR =
∣∣Φr

∣∣2 = 〈Φr

∣∣Φr

〉
(4.74) {{eq:intensity_no_polarization_analysis}}{{eq:intensity_no_polarization_analysis}}

This would allow for the direct computation of the reflected intensity if t0 would
describe the incoming polarization state. In case of an arbitrary but pure state of the
incoming beam, the reflected wave can be described by a reflection matrix

Φr(z) = RΦi(z) , (4.75) {eq:intensity_no_polarization_analysis}

where R is a 2× 2 matrix:

R =

(
r++ r−+

r+− r−−

)
(4.76)

with its non-diagonal elements contributing to spin-flip reflections. If we consider the
intensities right a the topmost interface of the sample at z = z0 = 0, the phase factors
drop out and we find the relation

r0 = Rt0 . (4.77) {{eq:R-matrix}}{{eq:R-matrix}}

Therefore, as soon as R is known, it is trivial to perform a calculation for any desired
incoming polarization state. It is clear that (4.77) is a system of two equations with four
unknown variables. Hence if two pairs of incoming and reflected waves t0, r0 and t′0, r′0
are known, the reflection matrix can be determined (if they are linearly independent).
Writing these four equations as a matrix(

r0, r0
′) = R

(
t0, t0

′) , (4.78) {{eq:R-matrix2}}{{eq:R-matrix2}}

one can see that the inversion of this equation becomes trivial if the two incoming
waves are chosen such that they are in a + and − polarization state. If they are
chosen differently, inverting equation (4.78) corresponds to the rotation of the incoming
polarization vectors such that they become pure + and − waves.

If we perform polarization analysis, the analyzer will only pass a wave in the Φf

polarization state. Hence the reflected wave needs to be projected onto this state to
obtain the measured intensity

IR =
∣∣∣〈Φf |R|Φi

〉∣∣∣2 = 〈Φf |R|Φi

〉
·
〈
Φi|R†|Φf

〉
. (4.79) {{eq:intensity_polarization_analysis}}{{eq:intensity_polarization_analysis}}

Following [58], we introduce the density matrix fp (polarizer) for an arbitrary mixed
state of incoming beam and, correspondingly, fa (analyzer) for an arbitrary mixed
state passed through a polarization analyzer:

fp =
1

2

(
1 + σ · p

)
fa =

1

2

(
1 + σ · a

)
. (4.80) {{eq:density_operators}}{{eq:density_operators}}
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The beam polarization as well as analyzer direction and efficiency are described by the
Bloch vectors p,a ∈ R3. |p| = 1 corresponds to some pure state of beam polarization,
while |p| < 1 is for a state mixture (partial polarization). The same holds for non-
perfect analyzers, where we call |p| the efficiency. 4

In order to compute the reflection coefficient for a mixed-state beam, equation
(4.79) needs to be rewritten in the density matrix formalism〈

Φi

∣∣∣R†
∣∣∣Ψf

〉
·
〈
Φf

∣∣∣R ∣∣∣Φi

〉
= Tr

(∣∣Φi

〉 〈
Φi

∣∣R†
∣∣∣Φf

〉〈
Φf

∣∣∣R) . (4.81) {{eq:intensity_trace}}{{eq:intensity_trace}}

Here Tr denotes trace operation.
∣∣∣Φf

〉〈
Φf

∣∣∣ and
∣∣Φi

〉 〈
Φi

∣∣ are respective outer products
for the Φf and Φi pure states and coincide with the corresponding density matrices.
To generalize expression (4.81) to mixed states of the incoming beam and polarization
analyzer, one has to replace the explicit outer products with the density matrices fp, fa
that describe the polarizer and analyzer as defined in (4.80). This will automatically
take into account the averaging over all possible initial and final pure states of the
system. Therefore, the final expression for IR reads

IR = Tr
(
fpR†faR

)
. (4.82) {{eq:32}}{{eq:32}}

This expression should work for both a perfect and imperfect polarizer and analyzer.
It also seems to be consistent with Wildes [59, 60], this paper was recommended as
standard reference on this topic by Artur.

It needs to be noted that the limit |⃗a| = 0 does not correspond to no polarization
analysis (i.e. a very common experiment without polarization analysis). Instead, if
no polarization analysis is performed, writing (4.74) in the density matrix formalism
yields

IR =
∣∣Φr

∣∣2 = 〈Φi

∣∣∣R†R
∣∣∣Φi

〉
= Tr

(
fpR†R

)
, (4.83) {eq:32}

which corresponds to fa = 1.
TODO: can we show the equivalence between the Wildes approach and our density

matrix formulas?

4.4.3 Numerically Stable Implementation
{sec:implementation}

We combine the amplitude vectors for + and − polarization into a single matrix of
dimension 4× 2Tj

Rj

 =

(
tj

+ tj
−

rj
+ rj

−

)
, Tj =

(
tj

+, tj
−
)
, Rj =

(
rj

+, rj
−
)
, (4.84)

4In PolarizedSpecular, Sec. 5.1, Dmitry claims this treatment of a non-perfect analyzer is not
possible and suggests a different treatment. However i (rb) think that his argument is not correct.
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where the submatrices Tj and Rj are of dimension 2×2. The recursion equation (4.69)
can then be written simultaneously for both polarization states asTa

Ra

 =
1

2

δa−1 0

0 δa

1 + Pab 1− Pab

1− Pab 1 + Pab

Tb
Rb

 . (4.85)

Explicitly performing this multiplication yields two matrix recursion equations

Ta =
1

2
δa

−1
((

1 + Pab

)
Tb +

(
1− Pab

)
Rb

)
(4.86)

Ra =
1

2
δa

((
1− Pab

)
Tb +

(
1 + Pab

)
Rb

)
(4.87)

After every step of the iteration (4.72), we want to rotate and normalize the polariza-
tion, such that we obtain the bottom boundary condition Ta = 1. For this purpose,
we define the rotation matrix S as

T ′
a = Ta · Sa = 1 , (4.88)

and it must also be applied to rotate the reflected components as well 5

R′
a = Ra · Sa . (4.89)

Consequently, the recursion equations reduce to the primed version {eq:primed_recursion}

T ′
a = 1 (4.90a)

Sa
−1 =

1

2
δa

−1
((

1 + Pab

)
+
(
1− Pab

)
R′

b

)
=: δa

−1 · S̃a
−1 (4.90b)

R′
a =

1

2
δa

((
1− Pab

)
+
(
1 + Pab

)
R′

b

)
· Sa . (4.90c)

This process requires the inverse of Sa−1, which is easy to obtain

Sa =
1

det S̃a
−1


(
S̃a

−1
)
1,1

−
(
S̃a

−1
)
1,0

−
(
S̃a

−1
)
0,1

(
S̃a

−1
)
0,0

 δa , (4.91)

and since it does not contain the inverse δ−1-matrix anymore can be evaluated numer-
ically stable.

5What happens here is a rotation of the wave function written as a superposition Φ′
a
±
= a±Φa

+ +
b±Φa

−. This is just written as a single matrix equation and from this it is obvious that the same
matrix must be applied to both Ta and Ra.
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For the computation of reflectivity alone, we would be done at this point, however,
for perturbation theory, we still need the amplitudes within the layer stack. Therefore,
all rotations of the polarization need to be forward-propagated according to

Ta =

0∏
i=m−1

Si (4.92)

Ra = R′
a ·

0∏
i=m−1

Si (4.93)

for a ≥ 1, where
0∏

i=m−1

Si = Sa−1Sa−2 · · ·S0 (4.94)

The proof of these relations can be done as follows. In order to obtain the correct
amplitudes in each layer, after every step of the recursion (4.90) the applied rotation
needs to be propagated down through the bottom of the stack according to

for m = N − 1 . . . 0 outer iteration from bottom to top (4.95)
T ′
m = 1 (4.96)

R′
m = Rm · Sm (4.97)

for i = m+ 1 . . . N (4.98)
Ti = Ti · Sm (4.99)

Ri = Ri · Sm (4.100)

Remark The defined R′
m is equal to the Xm in the Parratt formalism and equa-

tion (4.90)c is almost identical to the usual recursion in Xm [56, 57], apart from the
treatment of the phase factor. The second recursion equation in [56, 57] that yields
the amplitudes is replaced by storing the intermediate Sm.

Compute::SpecularMagnetic::topLayerR contains a lightweight implementa-
tion that does not store coefficients of intermediate layers and hence only computes
the coefficient of the top layer and hence reflection. This was introduced in order to
speed up pure reflectometry computations. This is similarly implemented for the scalar
implementation.

4.4.4 Evaluation of the Matrices p and p−1

Using the well-known representation of the Pauli matrices, the matrix pa is explicitly
given by

p =
1

2

(
α+ β eBσ

)
(4.101)

=
1

2

(
α+ βez β (ex − iey)

β (ex + iey) α− βez

)
(4.102)
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with

α := λ+ + λ− , β := λ+ − λ− . (4.103)

λ+ and λ− are the eigenvalues of the operator p. The inverse is given by

p−1 =
2

α2 − β2

(
α− βez −β (ex − iey)

−β (ex + iey) α+ βez

)
. (4.104)

4.4.5 Evaluation of the Phase Factors
We have

exp ipd = exp i
d

2
α · exp id

2
β eBσ , (4.105)

where d is the thickness of the current layer. For convenience, we define

α′ = dα/2 , (4.106)
β′ = dβ/2 . (4.107)

With this abbreviation we can write

exp ipd = exp iα′ · exp iβ′ eBσ . (4.108)

Evaluation of the first part is easy because it is diagonal (which is also the reason that
the multiplication of the two exponential functions works). The matrix in the second
factor has the eigenvalues ±β′ and its eigenvectors are given by

v1 =
1√

2 (1 + ez)

(
ez + 1

iey + ex

)
v2 =

1√
2 (1 + ez)

(
iey − ex

ez + 1

)
, (4.109) {{eq:transformation_matrix_q}}{{eq:transformation_matrix_q}}

so that the eigenvalue decomposition of the matrix β′ eBσ is given by

β′ eBσ = Q ·

(
+β′ 0

0 −β′

)
Q† Q =

(
v1, v2

)
. (4.110)

Then we have

exp ipd = exp iα′Q ·

(
exp+β′

exp−β′

)
·Q† . (4.111)

It needs to be stressed that this form strictly needs a normalized real vector eB.
Furthermore, this form is not very convenient for numerical evaluations since the ex-
ponential factor with −β′ turns very large and leads to an overflow. For this reason,
the first diagonal exponential matrix can be multiplied inside to obtain

exp ipd = Q

(
exp idλ+ 0

0 exp idλ−

)
Q† (4.112)

The case eB = 0 needs to be considered separately, then β = 0 and obviously

exp ipd = exp iα′ · 1 (4.113)
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4.4.6 Roughness

For a detailed description of the implemented roughness models, we refer to the doc-
ument Refraction, reflection, and scattering from rough interfaces in theory/Rough-
ness.pdf.

4.4.6.1 Tanh Profile

As in the scalar implementation, the analytical tanh interface profile is implemented
by replacing the Fresnel reflection and transmission coefficients in the transfer matrix

Sab =

1 + Pab 1− Pab

1− Pab 1 + Pab

 (4.114)

to incorporate the analytical solution of the Helmholtz equation via

Sab =

1/Rab + PabRab 1/Rab − PabRab

1/Rab − PabRab 1/Rab + PabRab

 . (4.115)

Here, the roughness correction factor Rab is also a 2× 2 matrix and is given by

Rab =

√
tanhc

{
(π/2)3/2 σa pb

}
√

tanhc
{
(π/2)3/2 σa pa

} = Rb · Ra
−1 (4.116)

This expression is evaluated via the eigenvalue decomposition

Rb = Qb


√

tanhc
(
σ′aλ

b
+

)
0

0

√
tanhc

(
σ′aλ

b
−

)
Q†

b (4.117) {{eq:roughness_tanh_eigenvalue_decomposition}}{{eq:roughness_tanh_eigenvalue_decomposition}}

Ra
−1 = Qa


1√

tanhc
(
σ′
aλ

a
+

) 0

0 1√
tanhc

(
σ′
aλ

a
−

)

Q†
a , (4.118) {eq:roughness_tanh_eigenvalue_decomposition}

where we have defined σ′a = (π/2)3/2 σa and the transformation matrix Q is the same
as in equation (4.109).
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The case of zero magnetic field e⃗b = 0 needs to be treated separately again, in
that case we have

R
b
=


√

tanhc
(
1/2σ′aαb

)
0

0

√
tanhc

(
1/2σ′aαb

)
 (4.119)

Ra
−1 =


1√

tanhc
(
1/2σ′

aαa

) 0

0 1√
tanhc

(
1/2σ′

aαa

)

 (4.120)

4.4.6.2 Névot-Croce

The interface transition part of the transfer matrix is replaced with the expression

Sab =
1

2

(1 + P
)
exp−

(
pb − pa

)2
σa

2/2
(
1− P

)
exp−

(
pb + pa

)2
σa

2/2(
1− P

)
exp−

(
pb + pa

)2
σa

2/2
(
1 + P

)
exp−

(
pb − pa

)2
σa

2/2

 ,

(4.121) {{eq:transfer_matrix_Gibaud}}{{eq:transfer_matrix_Gibaud}}

that is the polarized equivalent of the scalar implementation. For brevity the indices
on the Pab matrices are omitted in this section. In order to evaluate this matrix, we
need to compute the exponential of a matrix of the form

Pab =
(
pb ± pa

)2
. (4.122)

This matrix can be rewritten as

Pab = pb ± pa (4.123)

=
1

2

αb ± αa + σ ·
(
βb⃗bb ± βa⃗ba

)
︸ ︷︷ ︸

:=b⃗′

 . (4.124)

Now the vector b⃗′ is a complex vector, that will be normalized according to

b⃗′′ =
b⃗′

b⃗′T · b⃗′
, (4.125)

and we have the new eigenvalue

βab = b⃗′T · b⃗′ . (4.126)

It must be noted, that this normalization is not based on the usual inner product with
a complex conjugate, but really only the squared elements of the vector. This is due to
the fact that the p-matrix is only squared and not conjugated. The vectors b⃗′ and b⃗′′
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should carry a ±, depending on which matrix is being evaluated, however, for clarity
we drop this sign. Consequently, we can now write the resulting matrix

Pab =
1

2

(
αab + βabσ · b⃗′′

)
, (4.127)

with αab = αb ± αa . This expression can easily be squared

Pab
2 =

1

4

(
α2
ab + β2ab + 2αabβabσ · b⃗′′

)
(4.128)

=
1

4

(
α′′1 + β′′σ · b⃗′′

)
. (4.129)

The exponential of this can now be computed using the well-known eigendecomposition
of the second term. The eigenvalues are now ±β′′ and the corresponding eigenvectors
are given by

v1 =
1√

2 (b′′z + 1)

(
1 + b′′z

b′′x + ib′′y

)
v2 =

1√
2 (1− b′′z)

(
b′′z − 1

b′′x + ib′′y

)
, (4.130)

such that we have the usual eigenvalue equation Qvn = β′′vn with Q =
(
v1, v2

)
. The

inverse Q−1 is given by

Q−1 =

(
v′1

T

v′2
T

)
, (4.131)

where

v′1 =
1√

2 (b′′z + 1)

(
1 + b′′z

b′′x − ib′′y

)
v′2 =

1√
2 (1− b′′z)

(
b′′z − 1

b′′x − ib′′y

)
. (4.132)

Putting this all together, we obtain for b⃗′′ 6= 0

exp−
(
pb − pa

)2
σb

2/2 =

(
expα′′ 0

0 expα′′

)
·Q ·

(
expβ′′ 0

0 exp−β′′

)
Q−1

(4.133)

and for b⃗′′ = 0

exp−
(
pb − pa

)2
σ2b/2 =

(
expα′′ 0

0 expα′′

)
. (4.134)

For brevity, the factor σb2/2 was neglected in α′′ and β′′.
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4.4.7 Reflection Matrix and Boundary Conditions

In the current formalism, the reflection operator is directly computed by the imple-
mented iterative method and given by R0. In order to start the backwards iteration
described in Section 4.4.3, one needs to impose the bottom boundary condition of no
reflected wave, i.e. RN = 0. Furthermore, the iteration starts with pure polarization
states, i.e. TN = 1, that is subsequently rotated to the final transmitted polarization
state, by applying the top boundary condition T0 = 1.

4.4.8 Amplitudes for DWBA Computations

The DWBA computations require all four amplitudes that belong to the 4 waves
traveling with different wave vectors separately. This requires the decomposition of

Φj (z) = exp ipa (z − zj−1)tj + exp−ipa (z − zj−1)rj , (4.135)

into its eigenmodes. In order to achieve this, we again apply the eigenvalue decompo-
sition of pa, as it is also used in (4.117), where the transformation matrix is given by
(4.109) and the eigenvalues are of course λ+ and λ− and we have

exp ipjz = Q · exp iΛz ·Q† (4.136)

= Q ·

(
exp iλ+z 0

0 0

)
·Q† +Q ·

(
0 0

0 exp iλ−z

)
·Q† (4.137)

= exp iλ+zQ ·

(
1 0

0 0

)
·Q† + exp iλ−zQ ·

(
0 0

0 1

)
·Q† . (4.138)

This decomposition is valid unless the magnetic field vanishes. In the latter case, we
have

exp ipaz = exp iλ+z ·

(
1 0

0 0

)
+ exp iλ−z ·

(
0 0

0 1

)
. (4.139)

The resulting matrix can be written as a sum of two matrices

exp ipaz = exp iλ+zT2 + exp iλ−zT1 , (4.140)

and the needed amplitudes are then given by

T1
+ = T1 · t R1

+ = T1 · r . . . . (4.141)

The matrices T1 and T2 are computed via MatrixRTCoefficients::T1Matrix
and MatrixRTCoefficients::T2Matrix.

These vector amplitudes T+
1 etc. are computed in MatrixRTCoefficients::T1plus

etc.
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4.4.9 Limiting Case κ → 0

This case is implemented in the same way as for the scalar case, that is described in
Sec. 2.2.2 of the BornAgain manual version 1.7.2. For clarity, we briefly summarize
the treatment here.

• One single layer: This is a trivial case, nothing needs to be calculated here as
the outgoing wave is equal to the incoming one. As a consequence, it means that
we have T0 = 1 and R0 = 0

• More than one layer: In that case the limit κ→ 0 is well defined. For κ = 0, we
have R0 = −T0 = −1 and Tj = Rj = 0 for j > 0.

• κ = 0 in intermediate layer: This case is not treated separately but automatically
covered by the solution also present for scalar computations. In KzComputation::checkForUnderflow
a tiny imaginary part is added if the resulting value for κ2 is getting very small.

For a single layer, the correct computation of these conditions is checked in SpecularMagneticTest::test_degenerate

4.4.10 Test Suite
The scalar amplitudes allow the computation of vector amplitudes according to

T+
1 = 0 T+

2 =

(
t

0

)
T−
1 =

(
0

t

)
T+
2 = 0

R+
1 = 0 R+

2 =

(
r

0

)
R−

1 =

(
0

r

)
R−

2 = 0

These relations allow to compare the amplitudes from a scalar computation to a
polarized result, in case there is no magnetization present. For two layers, consistency
between the scalar and polarized computation is checked in SpecularMagneticTest::testZeroField

4.4.11 Magnetic Field in BornAgain
The z-component is afaik currently explicitly set conserved.

Imo this is bit funny, as Dmitry also remarked in Issue 2417

4.4.11.1 Magnetic field in the fronting medium

As previously described in [5], it is reasonable to assume that the incoming beam
penetrates the fronting medium of the sample assembly from a side. This results in kz
being preserved even when there is a non-zero magnetic field in the fronting medium.
To account for that in the calculations, one needs to replace k20z with k20z + 4πρ̌front
in equation ??, with ρ̌front being the SLD matrix for the fronting medium. It is also
equivalent to subtracting the magnetic field of the fronting medium, Bfront, from the
magnetic field of each layer, thus amending ρ̌M :

ρ̌′M = − m

2πℏ2
µ̌ (B −Bfront) .
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This amendment also concerns the nuclear (non-magnetic) scattering length density:

ρ′n = ρn − ρn,front,

where ρn,front is the nuclear SLD of the fronting medium.
TODO: Check this in the code
Further in the text we will omit the primes and handling of the fronting medium’s

properties, however, implying that both magnetic fields and nuclear SLDs are amended
in the way mentioned above.

4.4.11.2 Magnetic field z-component conservation

In the framework of the problem, the sample is assumed to be infinite along the x
and y axes, all parameters being constant inside each layer. This is equivalent to the
requirement of translational invariance along these axes. On the other hand, magnetic
field is known to be divergence-free,

∇ ·B = 0 .

Both of these conditions result in the z-component of the magnetic field (that is, the
component normal to the sample surface), Bz, being preserved in the whole sample
and fronting medium:

∂Bz

∂z
≡ 0 .

4.4.12 Further (Potential) Problems
• k20 = 4πρN

• Many layers leading to infinity

• Zero k-vector inside sample at critical angle? Probably not an issue, resolved
due to checkforunderflow in kzcomputation.cpp

• Branch cut from complex square-root?
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5 Instrument simulation

{SInstr}

5.1 Incoming beam and resolution
{SBeam}

to be written …
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Figure 5.1: Experimental geometry with a two-dimensional pixel detector. {FexpGeom}

5.2 Detector images
{SdetImg}

To conclude this chapter on the foundations of small-angle scattering, we shall derive
the geometric factors that allow us to convert differential cross sections into detector
counts. We shall also discuss how to present data on a physically meaningful scale.

5.2.1 Pixel coordinates, scattering angles, and q components
We assume that scattered radiation is detected in a flat, two-dimensional detector
that generates histograms on a rectangular grid, consisting of n ·m pixels of constant
width and height, as sketched in Fig. 5.1. This figure also shows the coordinate system
according to unanimous GISAS convention, with z normal to the sample plane, and
with the incident beam in the xz plane. The origin is at the center of the sample
surface. We suppose that the detector is mounted perpendicular to the x axis at a
distance L from the sample position. The real-space coordinate at the center of pixel
(i, j) is (L, yi, zi). Each pixel has a width ∆y and a height ∆z. BornAgain requires
a full parametrization of the detector geometry to correctly perform the affine-linear
mapping from pixel indices i, j to pixel coordinates xi, yi; see the rectangular detector
tutorial.

Since the differential scattering cross section (1.35) is given with respect to a
solid-angle element dΩ, we need to express the scattered wavevector kf in spherical
coordinates, using the horizontal azimuth angle ϕf and the vertical glancing angle
αf. The projection of (αf, ϕf) into the detector plane (y, z) is known as the gnomonic
projection. From elementary trigonometry one finds

y = L tanϕf,

z = (L/ cosϕf) tanαf.
(5.1) {{Eyzdet}}{{Eyzdet}}

Fig. 5.2 shows lines of equal αf, ϕf in the detector plane. To emphasize the curvature of
the constant-αf lines, scattering angles up to more than 25◦ are shown. In typical SAS
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Figure 5.2: Lines of constant αf (red) or ϕf (blue) in the detector plane, for a planar detector
at distance L from the sample. The black dot indicates the beamstop location for the central
incident beam (SAS geometry, k̂i = x̂). {Fconstalphi}

or GISAS, scattering angles are much smaller, and therefore the mapping between
pixel coordinates and scattering angles is in a good first approximation linear. Of
course BornAgain is not restricted to this linear regime, but uses the exact nonlinear
mapping (5.1).

To determine the scattering vector qij that corresponds to a pixel (i, j), we need
to express the outgoing wavevector kf as function of y and z. This can be done either
by inverting (5.1) and inserting the so obtained αf(y, z) and ϕf(y) in

kf = K


cosαf cosϕf

cosαf sinϕf

sinαf

 , (5.2) {{Ekf_by_angle}}{{Ekf_by_angle}}

or much more directly by using geometric similarity in Cartesian coordinates. The
result is rather simple:

kf =
K√

L2 + y2 + z2


L

y

z

 . (5.3) {{Ekf_by_pixel}}{{Ekf_by_pixel}}

The transform (5.6) between pixel coordinates y, z and physical scattering vector
components qy, qz is nonlinear, due to the square-root term in the denominator of (5.3).
For y, z � L, however, nonlinear terms loose importance.

The left detector frame in Fig. 5.3 shows circles of constant values of ±qx. For
given steps in qx, the distance between adjacent circles increases towards the detector
center. From ?? and (5.3), one finds asymptotically for y, z → L that qx goes with the
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Figure 5.3: Lines of constant qx (left), qy or qz (right), in units of the incident wavenumber
K = 2π/λ, for a planar detector. SAS geometry as in Fig. 5.2. {Fconstq}

square of the two other components of the scattering vector,

qx
K

.
=
y2 + z2

2L2

.
=
q2y + q2z
2K2

. (5.4) {{Eqxasy}}{{Eqxasy}}

Therefore, under typical small angle conditions y, z → L the dependence of the scat-
tering signal on qx is unimportant: one basically measures v(q) ' v(0, qy, qz). The
exception, for sample structures with long correlations in x direction, is illustrated
in Fig. 5.4.

As anticipated in (5.4), the other two components of q are in first order linear in
the pixel coordinates,

qy
K

=
y

L

(
1− y2 + z2

2L2
+ . . .

)
, (5.5) {Eqxasy}

and similarly for qz. The nonlinear correction terms lead to the pincushion distortion
shown in the right detector frame in Fig. 5.3.

Since pixel coordinates are meaningful only with respect to a specific experimental
setup, users may wish to transform detector images towards the physical coordinates
qy and qz. As shown in Fig. 5.5, this would yield a barrel-shaped illuminated area in
the qy, qz plane.

To summarize this section, the wavevector qij can be determined from the pixel
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Figure 5.4: Simulated detector image for small-angle scattering from uncorrelated cuboids
(right rectangular prisms). The incoming wavelength is 0.1 nm. The prisms have edge
lengths Ly = Lz = 10 nm; the length Lx, in beam direction, is varied as shown above the
plots. The circular modulation comes from a factor sinc(qxLx/2) in the cuboid form factor,
with qx given by (5.4). {Fdetbox}

indices through the following steps:

(i, j)

↓ calibrate of origin, then employ affine-linear mapping
(y, z)

↓ use (5.3)
kf

↓ use (??)
q

(5.6) {{Eqalgo}}{{Eqalgo}}

Transforming detector images from pixel coordinates into the qy, qz plane is not
implemented in BornAgain, and not on our agenda. We would, however, like to hear
about use cases.

When simulating and fitting experimental data with BornAgain, detector images
remain unchanged. All work is done in terms of reduced pixel coordinates y/L and z/L.
Corrections are applied to the simulated, not to the measured data.

…show how to plot q grid on top of detector image …

5.2.2 Intensity transformation
The solid angle under which a detector pixel is illuminated from the sample is in linear
approximation

∆Ω = cosαf ∆αf ∆ϕf = cosαf

∣∣∣∣∂(αf, ϕf)

∂(y, z)

∣∣∣∣∆y∆z = cos3αf cos
3ϕf

∆y∆z

L2
. (5.7) {Eqalgo}

Altogether, the expected count rate in detector pixel (i, j) is proportional to

Iij = cos3αf cos
3ϕf

dσ

dΩ
(qij), (5.8) {{EItrafo_cos}}{{EItrafo_cos}}
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Figure 5.5: The outer contour of the blue and red grid shows the border of a square detector
image after transformation into the physical coordinates qy, qz. The blue and red curves
correspond to horizontal and vertical lines in the detector. {Fconstp}

where we have omitted constant factors L−2, ∆y and ∆z. Using pixel coordinates
instead of angles, this can be rewritten as

Iij =

(
1 +

y2 + z2

L2

)−3/2
dσ

dΩ

(
qij(y, z)

)
. (5.9) {{EItrafo_pix}}{{EItrafo_pix}}
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List of Symbols

{Snomencl}
⊥ Normal to the xy sample plane, 2:1

‖ Parallel to the xy sample plane, 2:1

± Upward (+) or downward (−) propagating, 2:2

β Imaginary part of the refractive index, 1:7

δvl(q) Fourier transform of the SLD δv(r), evaluated in one sample layer, 2:5

δ Small parameter in the refractive index n = 1− δ + iβ, 1:7

ϵ0 Vacuum permittivity, 8.854…As/Vm, 1:3

ϵ(r) Relative dielectric permittivity function, 1:4

ϵ(r) Relative dielectric permittivity tensor, 1:3

v(r) Distortion field, 1:6

µ0 Vacuum permeability, 4π · 10−7 Vs/Am, 1:3

µn Magnetic moment of the neutron, 1:3

µ(r) Relative magnetic permeability tensor, 1:3

ρ̂ Density matrix operator, 1:2

ρ(r) Electron number density, 1:4

ρs Number density of chemical element s, 1:2

σ Scattering or absorption cross section, 1:7

σ Pauli vector, composed of the three Pauli matrices: σ = (σx, σy, σz), 1:3

ϕ(z) z-dependent factor of ψ(r), 2:2

χl(z) Indicates whether z is in layer l, 2:4

ψ(r) Stationary wavefunction, 1:1

ψ(r, t) Microscopic neutron wavefunction, 1:1
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ψ±(r) Upward (+) or downward (−) propagating component of ψ(r), 2:2

Ψ(r) Generic wave amplitude, possibly vectorial or spinorial, 1:5

Ψ(r) Stationary coherent spinor wavefunction, 1:3

ω Frequency of incident radiation, 1:1

Ω Solid angle, 1:7

A±
wl Amplitude of the plane wave ϕ±wl(r), 2:4

b Bound scattering length, 1:2

B(r, t) Magnetic field, 1:3

c. c. Complex conjugate, 1:4

D0(r) Differential operator in the vacuum wave equation, 1:5

D(r) Differential operator in the wave equation, 1:6

D(r, t) Displacement field, 1:3

E(r, t) Electric field, 1:3

b(r) Rescaled field b = (mµ/2πℏ2)B, 1:3

B(r, t) Magnetic induction, 1:3

J(r) Flux, 1:2

k⊥ Component of k along the sample normal, 2:1

kl Wavenumber in layer l, 2:3

k Wave vector, 1:2

k∥ Projection of k onto the sample plane, 2:1

K Wavenumber in vacuum, 1:1

l Layer index, 2:3

nl Refractive index of layer l, 2:3

n Refractive index, 1:6

n Normal vector of an interface, 2:5

N A multilayer sample has N layers, including the semi-infinite bottom
and top layers, 2:4

pj Probability of state j, 1:2
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re Classical electron radius 2.817 . . .−15 m, 1:4

r Position, 1:1

S Poyinting vector, 1:4

t Time, 1:1

δv̂(r) Perturbation potential, 1:6

vnucl(r) Rescaled neutron potential, scattering length density (SLD), 1:2

V (r) Neutron potential, 1:1

v̂(r) Generic potential, 1:5

x Horizontal coordinate, in the sample plane, 2:1

y Horizontal coordinate, in the sample plane, 2:1

zl Vertical coordinate at the top of layer l (at the bottom for l = 0), 2:4

z Vertical coordinate, along the sample normal, 2:1
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Index

Abelès matrix, 2:7
Absorption, 1:7
Atomic scale, 1:2

B Field, see Magnetic field
BA, see Born approximation
Background

diffuse, 1:2
Backtracking, 2:2
Born approximation, 1:6, 1:7

elastic scattering cross section, 1:7
Bound scattering length, see Scattering

length
Box (form factor), 5:5
Bragg scattering, 1:2

Circular modulation, 5:5
Classical electron radius, 1:4
Coherent scattering length, 1:2
Convention

coordinate system, 5:2
horizontal plane, 2:1
interface coordinate, 2:3, 2:4
layer numbering, 2:3, 2:4
p- and s-polarization, 2:5, 2:6
sign convention, 1:3
vertical direction, 2:1

Coordinate
interface, 2:3, 2:4

Coordinate system, 5:2
Correlation

atomic scale, 1:2
Cross section, 1:2, 1:7

Born approximation, 1:7
Crystallographic sign convention, 1:3
Cuboid (form factor), 5:5
Current density, see Flux

Damping, 1:3
inelastic scattering, 1:1

Density, 1:2

electron, 1:4
Density matrix, 1:2
Detector

background, 1:2
backtracking, 2:2
calibration, 5:2
distortion of qx, qy grid, 5:4
illumination angle correction factor,

5:5
pixel coordinate, 5:2
transmission geometry, 2:9

Dielectric permittivity, 1:4
Dispersion

X-ray, 1:4
Dispersion relation

neutron, 1:1
Distorted wave, 1:6

operator, 1:6
wave equation, 1:6

Distorted-wave Born approximation, 1:6,
1:7

multilayer, 2:4
Distortion

of qx, qy grid in detector plane, 5:4
Distortion field, 1:6

Elastic scattering, see also Cross section,
1:3

Electric field, 1:3
Electron density, 1:4
Electron radius, 1:4
Exciting wave

DWBA, 2:1

Fermi’s pseudopotential, 1:2
Field

magnetic, see Magnetic field
Flux

incident and scattered, 1:7
neutron, 1:2
reflected, 2:2
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transmitted, 2:2
X-rays, 1:4

FormFactorBox, 5:5
Fresnel coefficients, 2:3, 2:6

GISAS, see Grazing-incidence small-angle
scattering

Glancing angle, 2:1
Gnomonic projection, 5:2
Grazing incidence, 1:7
Grazing-incidence small-angle scattering,

1:1, 1:6
dielectric model, 1:4

H Field, see Magnetizing field
Horizontal plane, 2:1
Horizontal wavevector, 2:2

Illumination
detector, 5:5

Incident radiation
flux, 1:7

Incoherent scattering, 1:2
Index of refraction, see Refractive index
Indicator function, 2:4
Inelastic scattering, 1:1, 1:2
Instrument, 5:1
Interface

coordinate, 2:3, 2:4
Isotope, 1:2

Laue model, 1:4
Layer

index, 2:3, 2:4
refractive index profiles, 2:3
transfer matrix, 2:7

Layered structure, see Multilayer
Loss terms, see Damping

Magnetic field, 1:3
neutron propagation, 1:3

Magnetic moment
neutron, 1:3

Magnetic permeability, 1:3, 1:4
Magnetizing field, 1:3

coupling to neutron moment, 1:3
reduced, 1:3

Mapping
wavevector to pixel coordinate, 5:2

Maxwell’s equations, 1:3
Mixed quantum state, 1:2
Monochromatic wave, 1:1, 1:3

Multilayer, 2:1–2:14
coordinates, 2:3, 2:4
numbering, 2:3, 2:4
refractive index profiles, 2:3
transfer matrix, 2:7

Multiple reflections, 2:3

Neutron
dispersion relation, 1:1
magnetic moment, 1:3
optical potential, 1:2
optics, 1:2
polarized, 4:1
potential, 1:1, 1:2
spin, 1:2–1:3
wave propagation, 1:1–1:3

Normalization
neutron wavefunction, 1:2

Number density, 1:2, see Density
Numbering

layers, 2:3, 2:4

Optics
neutron, 1:2

p-Polarization, 2:5, 2:6
Pauli matrix, 1:3
Pauli vector, 1:3
Permeability, 1:3, 1:4
Permittivity, 1:4
Perturbation potential, 1:6
Phase factor, 1:1, 1:3
Pincushion distortion, 5:4
Pixel, see Detector
Plane

wave, 1:6
Plane wave, 1:2
Polarization, 1:3

neutron, 4:1
p and s, 2:5, 2:6

Potential
generic, 1:5
neutron, 1:1, 1:2
optical, 1:2
perturbation, 1:6

Poynting vector, 1:4
Prism (form factor)

reactangular (Box), 5:5
Projection

wavevector to pixel coordinate, 5:2
Pseudopotential

Fermi’s, 1:2
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Pure quantum state, 1:2

Quantum state
pure vs mixed, 1:2

Quantum-mechanical convention, 1:3

Reflectance, 2:2
Reflection, 1:7, 2:1, see also Fresnel

coefficients
coefficient, 2:2
multiple, 2:3

Reflectometer
vertical vs horizontal, 2:1

Refraction, 1:7, 2:1
Snell’s law, 2:4

Refractive index, 1:6
losses from Bragg scattering, 1:2
losses from incoherent scattering, 1:2
losses from inelastic scattering, 1:1
profile, 1:7
sign convention, 1:7
vertical variation, 2:1

s-Polarization, 2:5, 2:6
Sample normal, 2:1
Sample plane, 2:1
SAS, see Small-angle scattering
Scattered radiation

backtracking, 2:2
Scattering

Bragg, 1:2
cross section, 1:2, 1:7
diffuse, 1:2
elastic, 1:1, 1:3
geometry, 1:7
grazing incidence, see

Grazing-incidence small-angle
scattering

incoherent, 1:2
inelastic, 1:1, 1:2
matrix, 1:7
small-angle, 1:2

Scattering length, 1:2
coherent, 1:2

Scattering length density, 1:2
Schrödinger equation

macroscopic, 1:3
microscopic, 1:1

Sign convention
refractive index, 1:7
wave propagation, 1:3

SLD, see Scattering length density

Small-angle scattering, 1:2, 1:8
dielectric model, 1:4

Snell’s law, 2:4
Spin, 1:3

neutron, 1:2
Spinor, 1:3
Stationary wavefunction, 1:1

Time dependence
dielectric permittivity, 1:3
neutron potential, 1:1

Transfer matrix, 2:7
Transformation

wavevector to pixel coordinate, 5:2
Transition matrix, see Scattering matrix
Transmission, see Fresnel coefficients
Transmission geometry, 2:9
Transmittance, 2:2

Unit
neutron wavefunction, 1:2

Unperturbed distorted wave equation, 1:6

Vacuum, 1:6
neutron wavenumber, 1:1
wave operator, 1:5

Vertical direction, 2:1
Vertical wavenumber, 2:2

Wave
distorted, 1:6
exciting, 2:1
monochromatic, 1:1, 1:3
operator

distorted, 1:6
vacuum, 1:5

plane, 1:2, 1:6
Wave equation

generic, 1:5
unperturbed distorted, 1:6
X-ray, 1:4

Wave propagation, see also Sign
convention, 1:1–1:3

in multilayer, 2:1–2:2
neutron, 1:1–1:3
X-ray, 1:3–1:4

Wavenumber
neutron, 1:1
vertical, 2:2

Wavevector
complex, 2:4
horizontal, 2:2
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X-ray
flux, 1:4
scattering theory, 1:8

wave equation, 1:4
wave propagation, 1:3–1:4
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