BornAgain

Software for simulating and fitting
X-ray and neutron small-angle scattering
at grazing incidence

User Manual
0.2.5
August 26, 2014

C. Durniak, M. Ganeva, G. Pospelov, W. Van Herck, J. Wuttke

Scientific Computing Group
Jiilich Centre for Neutron Science
outstation at Heinz Maier-Leibnitz Zentrum Garching

Forschungszentrum Jiilich GmbH

Page 2

Disclaimer

This manual is under development and does not yet constitute a comprehensive
listing of BornAgain features and functionality. The included information and in-
structions are subject to substantial changes and are provided only as a preview.

Page 3 Contents

Contents

Introduction| 6

1 Quick start 8

1.1 Quick start on Unix Platforms|. 8

1.2 Quick start on Windows Platforms| 9

1.3 Gettinghelp| 9

2_Installation| 10

[2.1 Building and installing on Unix Platforms|. 10

[2.1.1 Third-partysoftware| 11

[2.1.2 Getting BornAgain sourcecode| 12

[2.1.3 Building and installingthecode| 13

[2.1.4 Running the first simulation| 14

[2.2 Installing on Windows Platforms|, 14

3 _Simulation 16

3.1 General methodologyl 16

3.2 Geometryofthesamplel L o o L. 16

13.3 Example 1: two types of islands on top of substrate without interference| . . . 18

[3.4 Example 2: working with sample parameters|. 23

|4 Graphical User Interface| 26

|5 Scattering cross—section| 27

5.1 Positionoftheproblem| 27

5.2 Collectionofparticles| 27

[6.2.1 Size-distributionmodels|. L 28

[5.2.2 Layoutofparticles| 30

[5.2.3 Implementation in BornAgain|, 32

5.2.4 Summary|. e e e e e 44

6.3 Particles- Formfactorsl. o 46

[5.3.1 Bornapproximation| i e e 46

[5.3.2 Distorted Wave Born Approximation| 48

[5.4 More complicated particles’shapes| 55

Contents Page 4

[5.4.1 Core-shell particles|. 55

|5.4.2 Rotationofparticles| 56

[5.4.3 Polydispersity] e 57

[5.5 Material layers|. 57
[5.5.1 Roughness|. e 57

5.6 Polarisationl e 57
58
[6.1 ImplementationinBornAgain| 58
|6.1.1 Preparing the sample and the simulation description| 60

|6.1.2 Choice of parametersto befitted|. 60

|6.1.3 Associating reference and simulateddatal. 61

[6.1.4 Minimizersettings| e 61

|6.1.5 Running the fitting ant retrieving theresults| 63

|6.2 Basic Python fittingexample|, 63
6.3 Advanced fitting|. 67
|6.3.1 Affecting y2 calculations|. 67

2 Simultan: fits of several datasets| 67

|6.3.3 Using fitting strategies| i 67

|6.3.4 Maskingtherealdatal. 67

|6.3.5 Tuning fitting algorithms| 67

|6.3.6 Fitting with correlated sample parameters| 67

[6.4 How to get the right answer from fitting| 67
ftw: hi r 69

7
IA.1 Pythonsimulationexample| 71
IA.2 Pythonfittingexample|. 73

B Theory 75
[B.1 Scattering on nanoparticles - Formal treatment|, 75
[B.2 Small angle approximation| 77
B.3 Born approximation| e e e e 78
IB.4 Distorted Wave Born Approximation|. 82
|C__Form factors| 85
C.l BOXl . . . o e e e e e 86
C2 Prism3] o 88
[C.3 Tetrahedron| 90
CA Prismbl 92
C.0 Conebl. e e e e e e e 94
C.6 Pyramid| e 96
|C.7 Anisotropicpyramid| e 98

Page 5 Contents

... 102
|C.10 Ellipsoidal cylinder| 104
C.11CoNE e e e e e e e e 106
[C.12Full Sphere| 108
|C.13Truncated Sphere| e 110
|C.14 Full Spheroid| 112
|C.15 Truncated Spheroid|. 114
[C.16 Hemiellipsoid|. e 116
C.17Ripplel| oo e 118

C.18Ripple2| e 120

Contents Page 6

Introduction

BornAgain is a free software package to simulate and fit small-angle scattering at graz-
ing incidence (GISAS). It supports analysis of both X-ray (GISAXS) and neutron (GISANS)
data. Its name, BornAgain, indicates the central role of the distorted-wave Born approxi-
mation (DWBA) in the physical description of the scattering process. The software provides
a generic framework for modeling multilayer samples with smooth or rough interfaces and
with various types of embedded nanoparticles.

BornAgain almost completely reproduces the functionality of the widely used program
IsGISAXS by R. Lazzari [?].

BornAgain goes beyond IsGISAXS by supporting an unrestricted number of layers and
particles, diffuse reflection from rough layer interfaces, particles with inner structures, neu-
tron polarization and magnetic scattering. Adhering to a strict object-oriented design,
BornAgain provides a solid base for future extensions in response to specific user needs.

BornAgain is a platform-independent software, with active support for Linux, MacOS
and Microsoft Windows. It is a free and open source software provided under the terms of
the GNU General Public License (GPL). This documentation is released under the Creative
Commons license CC-BY-SA.

The authors will be grateful for all kind of feedback: criticism, praise, bug reports, fea-
ture requests or contributed modules. When BornAgain is used in preparing scientific pa-
pers, please cite this manual as follows:

C. Durniak, M. Ganeva, G. Pospelov, W. Van Herck, J. Wuttke (2013),

BornAgain - Software for simulating and fitting X-ray and neutron small-angle
scattering at grazing incidence, version 0.2.5,
http://apps.jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for installing the
software and running a simulation on Unix and Windows platforms in Section |1} A more
detailed description of the installation procedure is given in Section2] The general method-
ology of a simulation with BornAgain and detailed simulation usage examples are given in
Section The fitting toolkit, provided by the framework, is presented in Section@ while

http://apps.jcns.fz-juelich.de/BornAgain

Page 7 Contents

Section[7]provides a brief overview of the software architecture.

Chapter 1. Quick start Page 8

Chapter 1

Quick start

1.1 Quick start on Unix Platforms

This section shortly describes how to build and install BornAgain from source and run
the first simulation on Unix Platforms. Further details about the installation procedure are
given in Section[2]

Step I: installing the third party software
* compilers: clang versions = 3.1 or GCC versions = 4.2
e cmake (=2.8)
¢ boost library (= 1.48)
¢ GNU scientific library (= 1.15)
o fftw3 library (= 3.3.1)

e Python-2.7, python-devel, python-numpy-devel

Step II: getting the source
Download BornAgain source tarball fromhttp://apps. jcns.fz-juelich.de/BornAgain
or use the following git repository

[
'git clone git://apps.jcns.fz-juelich.de/BornAgain.git ‘
L

Step III: building the libraries and executable

mkdir <build_dir>; cd <build_dir>;

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make -j4

make check

make install

http://apps.jcns.fz-juelich.de/BornAgain

Page 9 Quick start on Windows Platforms

Step IV: running an example

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.2 Quick start on Windows Platforms

Step I: installing the third party software

The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
available athttps://code.google. com/p/pythonxy which, with default installation op-
tions, contains at least these three packages.

Step II: using BornAgain installation package

Windows installation package can be downloaded fromhttp://apps. jcns.fz-juelich.
de/BornAgain, Double-click on it to start the installation process. Then follow the instruc-
tions.

Step III: running the example
Run an example located in BornAgain installation directory:

python C:/BornAgain-<Version>/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.3 Getting help

Users of the software who encounter problems during the installation of the framework
or during the run of a simulation can use the web-based issue tracking system at http:
//apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues to report a bug.
The same system can be used to request new features. This system is open for all users
in read mode, while submitting bug reports and feature requests are possible only after a
simple registration procedure.

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation Page 10

Chapter 2

Installation

BornAgain is supported under x86/x86_64 Linux, Mac OS X and Windows operating sys-
tems. It has been successfully compiled and tested on

e Microsoft Windows 7 64-bit, Windows 8 64-bit

Mac OS X 10.8 (Mountain Lion), 10.9 (Maverick)
¢ OpenSuse 12.3 64-bit

¢ Ubuntu 12.10, 13.04 64-bit

* Debian 7.1.0, 32-bit, 64-bit

At the moment we support build and installation from source on Unix Platforms (Linux,
Mac OS) and installation using binary installer packages on MS Windows 7, 8 (see Sec-
tion[2.1Jand Section[2.2} respectively). In the next releases we are planning to provide binary
installers for Mac OS X and Debian.

We welcome feedback and bug reports related to installation and use of BornAgain via
http://apps. jcns.fz-juelich.de/redmine/projects/bornagain/issues
2.1 Building and installing on Unix Platforms

BornAgain uses CMake to configure a build system for compiling and installing the frame-
work. There are three major steps to build BornAgain :

1. Acquiring the required third-party libraries.
2. Getting BornAgain source code.
3. Using CMake to build and install the software.

The remainder of this section explains each step in detail.

http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Page 11 Building and installing on Unix Platforms

2.1.1 Third-party software

To successfully build BornAgain a number of prerequisite packages must be installed.

» compilers: clang versions = 3.1 or GCC versions = 4.1.2

cmake (=2.8.3)

boost library (= 1.48)

GNU scientific library (= 1.15)

fftw3 library (= 3.3)

Python (= 2.7, < 3.0), python-devel, python-numpy-devel, python-matplotlib

Other packages are optional
* ROOT framework (adds several additional fitting algorithms to BornAgain)

All required packages can be easily installed on most Linux distributions using the sys-
tem’s package manager. Below we give examples for a few selected operation systems.
Please note, that other distributions (Fedora, Mint, etc) may have different commands for
invoking the package manager as well as slightly different names of packages (like “boost”
instead of “libboost” etc). Besides the installation should be very similar.

Ubuntu (12.10, 13.04), Debian (7.1)
Installing the required packages

sudo apt-get install git cmake libgslO-dev libboost-all-dev
libfftw3d-dev python-dev python-numpy python-matplotlib python
-matplotlib-tk

Installing the optional packages

sudo apt-get install root-system

OpenSuse 12.3

Installing the required packages

sudo zypper install git-core cmake gsl-devel boost-devel fftw3-
devel python-devel python-numpy-devel python-matplotlib
python-matplotlib-tk

Installing the optional packages. First add the “scientific” repository for your version of
OpenSuse

sudo zypper ar http://download.opensuse.org/repositories/science/
openSUSE_12.3 science

Chapter 2. Installation Page 12

Then install optional ROOT framework

sudo zypper root-system

Mac 0§X10.8,10.9

To simplify the installation of third party open-source software on a Mac OS X system we
recommend the use of MacPorts package manager. The easiest way to install MacPorts is
by downloading the dmg from www.macports.org/install.php and running the system’s
installer. After the installation new command “port” will be available in a terminal window
of your Mac.

Installing the required packages

sudo port -v selfupdate

sudo port install git-core cmake

sudo port install fftw-3 gsl

sudo port install boost -no_single-no_static+python27
sudo port install py27-matplotlib py27-numpy py27-scipy
sudo port select --set python python27

Installing the optional packages

sudo port install root +fftw3+python27

2.1.2 Getting BornAgain source code

BornAgain source can be downloaded athttp://apps. jcns.fz-juelich.de/BornAgain
and unpacked with

tar xfz BornAgain-<version>.tar.gz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git://apps.jcns.fz-juelich.de/BornAgain.git

More about Git

Our Git repository holds two main branches called “master” and “develop”. We consider
“master” branch to be the main branch where the source code of HEAD always reflects the
latest stable release. git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so
you will be able to fetch changes from the remote branch at any time using git pull
command.

“Master” branch is updated approximately once per month. The second branch, “de-
velop” branch, is a snapshot of the current development. This is where any automatic
nightly builds are built from. The develop branch is always expected to work. So in order to
get the most recent features of the source code, one can switch to it by

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Page 13 Building and installing on Unix Platforms

cd BornAgain
git checkout develop
git pull

2.1.3 Building and installing the code

BornAgain should be built using CMake cross platform build system. Having the third-party
libraries installed on your system and BornAgain source code acquired as explained in the
previous sections, type the build commands

mkdir <build_dir>

cd <build_dir>

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make -j4

Here <source_dir> is the name of the directory, where BornAgain source code has
been copied, <install_dir> is the directory, where you want the package to be installed,
and <build_dir> is the directory where the building will occur.

About CMake

Having a dedicated directory <build_dir> for the build process is recommended
%\ by CMake. This allows several builds with different compilers/options from the same

source and keeps the source directory clean from build remnants.

The compilation process invoked by the command “make” lasts about 10 minutes on
an average laptop of 2012 edition. On multi-core machines the compilation time can be
decreased by invoking command “make” with the parameter “make -j[N]”, where N is the
number of cores.

Running functional tests is an optional but recommended step. Command “make check”
will compile several additional tests and run them one by one. Each test contains the sim-
ulation of a typical GISAS geometry and the comparison on numerical level of simulation
results with reference files. Having 100% tests passed ensures that your local installation is
correct.

make check

100% tests passed, O tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check

The last command “make install” copies the compiled libraries and some usage exam-
ples into the installation directory.

make install

Chapter 2. Installation Page 14

After installation

After the installation is completed, the location of BornAgain libraries needs to be included
into your LD_LIBRARY_PATH and PYTHONPATH environment variables. This can be done by
running BornAgain setup script in the terminal session

source <install_dir>/bin/thisbornagain.sh

Conveniently, a given call can be placed in your .bashrc file.

Troubleshooting

In the case of a complex system setup, with libraries of different versions scattered across
multiple places (/opt/local, /usr/local etc.), you may want to help CMake in finding the
correct library paths by running cmake with additional parameter

cmake -DCMAKE_PREFIX_PATH=/usr/local -DCMAKE_INSTALL_PREFIX=<
install_dir> <source_dir>

2.1.4 Running the first simulation

In your installation directory you will find

./include/BornAgain - header files for compilation of your C++
program

./1lib - libraries to import into python or link with your C++
program

./share/BornAgain/Examples - directory with examples

Run your first example and enjoy the first BornAgain simulation plot.

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

2.2 Installing on Windows Platforms

Step I: install the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system.

If you do not have have Python installed

You can use PythonXY installer at https://code.google.com/p/pythonxy which, with
the default installation options, contains at least these three packages. The user has to
download and install this package before proceeding to the installation of BornAgain.

https://code.google.com/p/pythonxy

Page 15 Installing on Windows Platforms

If you have Python already installed

You might want to keep using this installation and to install the missing modules. Therequired
libraries can be found at

matlab:
http://matplotlib.org/downloads.html

numpy , dateutil, pyparsing:
http://www.1lfd.uci.edu/ " gohlke/pythonlibs

Step II: use the installation package

BornAgain installation package for Windows can be downloaded fromhttp://apps. jcns.|
fz-juelich.de/BornAgain. Double-click on it to start the installation process. And then
follow the instructions.

Step IV: run an example
Run an example located in BornAgain installation directory:

python C:/BornAgain-<Version>/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 3. Simulation Page 16

Chapter 3

Simulation

3.1 General methodology

A simulation of GISAXS using BornAgain consists of following steps:
¢ define materials by specifying name and refractive index,

¢ define embedded particles by specifying shape, size, constituting material, interfer-
ence function,

¢ define layers by specifying thickness, roughness, material,

¢ include particles in layers, specifying density, position, orientation,
* assemble a multilayered sample,

¢ specify input beam and detector characteristics,

¢ run the simulation,

¢ save the simulated detector image.

We are planing to organize all these steps in a graphical user interface (GUI). For the time
being, however, BornAgain must be used via a C++ program or Python scripts. In the fol-
lowing, we describe how to write a Python script which runs a BornAgain simulation. For
tutorials about this programming language, the users are referred to [?].

More information about the general software architecture and BornAgain internal de-
sign are given in Section[7]

3.2 Geometry of the sample

The geometry used to describe the sample is shown in figure The z-axis is perpen-
dicular to the sample’s surface and pointing upwards. The x-axis is perpendicular to the
detector plane. The input and the scattered output beams are each characterized by two

Page 17 Geometry of the sample

angles a;, ¢; and ay, ¢y, respectively. Our choice of orientation for the angles a; and ar is
so that they are positive as shown in figure[3.1}

Layer 0 : ng
ki

Q;

L
i

Layer 1 :n,

Layer 2 : ngy

Layer N : ny

Figure 3.1: Representation of the scattering geometry. n; is the refractive index of layer j
and «; and ¢; are the incident angles of the wave propagating. a is the exit angle with
respect to the sample’s surface and ¢ ¢ is the scattering angle with respect to the scattering
plane.

The layers are defined by their thicknesses (parallel to the z-direction), their possible
roughnesses (equal to 0 by default) and the materials they are made of. They have an in-
finite extension in the x and y directions. And, except for roughness, their interfaces are
plane and perpendicular to the z-axis. There is also no limitation to the number of layers
that could be defined in BornAgain. Note that the top and bottom layers are semi-infinite
and they thicknesses are not defined.

The nanoparticles are characterized by their form factors (i.e. the Fourier transform of
the shape function - see Appendix|C]|for a list of form factors implemented in BornAgain)
and the composing material. The number of input parameters for the form factor depends
on the particle symmetry; it ranges from one parameter for a sphere (its radius) to three for
an ellipsoid (its three main axis lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions,
whose values correspond to the bottoms of the particles. The in-plane distribution of par-
ticles is linked with the way the particles interfere with each other. It is therefore imple-
mented when dealing with the interference function.

The complex refractive index associated with a layer or a particle is written as n =1 —
0 + i, with 6, f € R. In our program, we input 6§ and S directly.

Chapter 3. Simulation Page 18

DS wWw N -

10
11
12

The input beam is assumed to be monochromatic without any spatial divergence.

Units: By default the angles are expressed in radians and the lengths are given in nanome-
ters. But it is possible to use other units by specifying them right after the value of the cor-
responding parameter like, for example, 20. 0*micrometer.

3.3 Example 1: two types of islands on top of substrate without
interference

In this example, we simulate the scattering from a mixture of cylindrical and prismatic
nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.

We are going to go through each step of the simulation. The Python script specific to each
stage will be given at the beginning of the description. But for the sake of completeness the
full code is given in Appendix[A.1]

Importing Python modules

import numpy

import matplotlib

import pylab

from libBornAgainCore import *

We start by importing different functions from external modules, for example NumPy (lines|[1}
, which is a fundamental package for scientific computing with Python [?]. In particular,
linef4]imports the features of BornAgain software.

Defining the materials

def get_sample():
nnn
Build and return the sample representing cylinders and

pyramids on top of substrate without interference.
nnn

defining materials

m_air = HomogeneousMaterial ("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial ("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

Line[5|marks the beginning of the function to define our sample. Lines[10}[I1]and[12|define
different materials using class HomogeneousMaterial. The general syntax is the following

<material_name> = HomogeneousMaterial ("name", delta, beta)

where name is the name of the material associated with its complex refractive index n=1-
delta +i beta. <material_name> is later used when referring to this particular material.

Page 19 Example 1: two types of islands on a substrate without interference

The three materials defined in this example are Air with a refractive index of 1 (delta =
beta = 0), a Substrate associated with a complex refractive index equal to 1 —6 x 1076 +
i2x1078, and the material of the particles, whose refractive indexisn=1-6x 107%+i2x1078.

Defining the particles
14 # collection of particles
15 cylinder_ff = FormFactorCylinder (5*nanometer , 5*nanometer)
16 cylinder = Particle(m_particle, cylinder_f£ff)
17 prism_ff = FormFactorPrism3 (10*nanometer, 5*nanometer)
18 prism = Particle(m_particle, prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated parti-
cles with a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors (see Appendix[C),
their sizes and the material they are made of. Here, for the cylindrical particle, we input its
radius and height. For the prism, the possible inputs are the length of one side of its equi-
lateral triangular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical
particle, we first specify the form factor of a cylinder with its radius and height, both equal
to 5 nanometers in this particular case (see line[15). Then we associate this shape with the
constituting material as in line The same procedure has been applied for the prism in

lines[17]and[18] respectively.

Characterizing particles assembly

19 particle_layout = ParticleLayout ()

20 particle_layout.addParticle(cylinder, 0.0, 0.5)

21 particle_layout.addParticle(prism, 0.0, 0.5)

22 interference = InterferenceFunctionNone ()

23 particle_layout.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our
sample is called ParticleLayout (line . We use the associated function addParticle
for each particle shape (lines[20} 21). Its general syntax is

addParticle(<particle_name>, depth, abundance)

where <particle_name> is the name used to define the particles (lines and, depth
(default value = 0) is the vertical position, expressed in nanometers, of the particles in a
given layer (the association with a particular layer will be done during the next step) and
abundance is the proportion of this type of particles, normalized to the total number of
particles. Here we have 50% of cylinders and 50% of prisms.

Chapter 3. Simulation Page 20

Remark: Depth of particles

The vertical positions of the particles in a layer are given in relative coordinates. For
A the top layer, the bottom of the layer corresponds to depth=0 and negative values

would correspond to particles floating above layer 1 since the vertical axis, shown in

figure is pointing upwards. But for all the other layers, it is the top of the layer

which corresponds to depth=0.

Finally, lines [22| and [23| specify that there is no coherent interference between the waves
scattered by these particles. In this case, the intensity is calculated by the incoherent sum
of the scattered waves: (|F jlz), where Fj is the form factor associated with the particle of
type j. The way these waves interfere imposes the horizontal distribution of the particles
as the interference reflects the long or short-range order of the particles distribution (see
Section[5.2). On the contrary, the vertical position is imposed when we add the particles in
a given layer by parameter depth, as shown in lines[20|and 21}

Multilayer
24 |# air layer with particles and substrate form multi layer
25 air_layer = Layer(m_air)
26 air_layer.setLayout (particle_layout)
27 substrate_layer = Layer (m_substrate, 0)
28 multi_layer = MultiLayer ()
29 multi_layer.addLayer (air_layer)
30 multi_layer.addLayer (substrate_layer)
31 return multi_layer

We now have to configure our sample. For this first example, the particles, i.e. cylinders and
prisms, are on top of a substrate in an air layer. The order in which we define these layers
is important: we start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line[25} we use the previously
defined mAmbience (="air" material) (line. The command in lineshows that this layer
contains particles which are defined using particle layout object. The substrate layer only
contains the substrate material (line[27).

There are different possible syntaxes to define a layer. As shown in lines[25|and 27} we
can use Layer (<material_name>,thickness) or Layer(<material_name>). The sec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is
expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultilLayer ()
constructor (line: we start with the air layer decorated with the particles (line, which
is the layer at the top and end with the bottom layer, which is the substrate (line[30).

Characterizing the input beam and output detector

32 |def get_simulation():
33 nmnn

Page 21 Example 1: two types of islands on a substrate without interference

34

35
36
37

38

39

40
41
42
43
44
45
46
47
48

Create and return GISAXS simulation with beam and detector

defined
nmmnn
simulation = Simulation ()
simulation.setDetectorParameters (100, -1.0*degree, 1.0xdegree

, 100, 0.0xdegree, 2.0xdegree)
simulation.setBeamParameters (1.0*angstrom, 0.2xdegree, 0.0%
degree)
return simulation

The first stage is to create the Simulation() object (line[36). Then we define the detector
(line[37) and beam parameters (line[38). Those functions are part of the Simulation class.
The different incident and exit angles are shown in figure

The detector parameters are set using ranges of angles via the function:

setDetectorParameters (n_phi, phi_f_min, phi_f_max, n_alpha,
alpha_f_min, alpha_f_max),

where number of bins n_phi, low edge of first bin phi_f_min and upper edge of last bin
phi_f_max all together define ¢y detector axis, whilen_alpha, alpha_f_minand alpha_f_max
are related to a s detector axis.
Remark: Axis binning
By default axes are binned to provide constant bin size in k-space, which means
slightly non-equidistant binning in angle space. Other possible options, including
user defined axes with custom variable bin size are explained elsewhere.

To characterize the beam we use function

setBeamParameters (lambda, alpha_i, phi_i),

where lambda is the incident beam wavelength, alpha_i is the incident grazing angle on
the surface of the sample, phi_i is the in-plane direction of the incident beam (measured
with respect to the x-axis).

Remark: Scattering vector

In BornAgain the wave vector q is defined as k; — k¢, where k; is the incident wave

vector and ky the scattered one.

Running the simulation and plotting the results

def run_simulation():
nmon

Run simulation and plot results
nmn
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample (sample)
simulation.runSimulation ()
result = simulation.getIntensityData().getArray() + 1 # for
log scale

Chapter 3. Simulation Page 22

49 pylab.imshow (numpy.rot90(result, 1), norm=matplotlib.colors.
LogNorm(), extent=[-1.0, 1.0, 0, 2.0])
50 pylab.show ()

The function, whose definition starts from line[40} gathers all items. We create the sample
and the simulation objects at the lines [44Jand[45] using calls to the previously defined func-
tions. We assign the sample to the simulation at line [46|and finally launch the simulation
at line (47

In line 48| we obtain the simulated intensity as a function of outgoing angles ay and
¢ for further uses (plots, fits,...) as a NumPy array containing n_phixn_alpha datapoints.
Lines produces the two-dimensional contourplot of the intensity as a function of a ¢

and ¢ shown in figure[3.2]

Figure 3.2: Simulated grazing-incidence small-angle X-ray scattering from a mixture of
cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength A of 1 A and incident angles
a; =0.2°, ¢p; = 0°. The cylinders have a radius and a height both equal to 5 nm, the prisms
are characterized by a side length equal to 10 nm and they are 5 nm high. The material of
the particles has a refractive index of 1 -6 x 107 + i2 x 1078, For the substrate it is equal to
1-6x107%+i2x 1078, The colorscale is associated with the output intensity in arbitrary
units.

Page 23 Example 2: working with sample parameters

3.4 Example 2: working with sample parameters

This section gives additional details about the manipulation of sample parameters during
run time; that is after the sample has already been constructed. For a single simulation this
is normally not necessary. However it might be useful during interactive work when the
user tries to find optimal sample parameters by running a series of simulations. A similar
task also arises when the theoretical model, composed of the description of the sample
and of the simulation, is used for fitting real data. In this case, the fitting kernel requires
a list of the existing sample parameters and a mechanism for changing the values of these
parameters in order to find their optima.

In BornAgain this is done using the so-called sample parameter pool mechanism. We
are going to briefly explain this approach using the example of Section[3.3]

In BornAgain a sample is described by a hierarchical tree of objects. For the multilayer
created in the previous section this tree can be graphically represented as shown in Fig.
Similar trees can be printed in a Python session by runningmulti_layer.printSampleTree ()

The top MultiLayer object is composed of three children, namely Layer #0, Layer
Interface #0andLayer #1. The children objects might themselves also be decomposed
into tree-like structures. For example, Layer #0 contains aParticleLayout object, which
holds information related to the two types of particles populating the layer. All numerical
values used during the sample construction (thickness of layers, size of particles, roughness
parameters) are part of the same tree structure. They are marked in the figure with shaded
gray boxes.

These values are registered in the sample parameter pool using the name composed of
the corresponding nodes’ names. And they can be accessed/changed during run time. For
example, the height of the cylinders populating the first layer can be changed from the
current value of 5 nm to 1 nm by running the command

multi_layer.setParameterValue(’/Multilayer/Layer0O/ParticlelLayout/
ParticleInfoO/Particle/FormFactorCylinder/height?’, 1.0)

A list of the names and values of all registered sample’s parameters can be displayed
using the command

> multi_layer.printParameters ()
The sample contains following parameters (’name’:value)
>/Multilayer/LayerO/ParticleLayout/ParticleInfo0O/Particle/
FormFactorCylinder/height ’:5
’>/Multilayer/LayerO/ParticleLayout/ParticleInfoO/Particle/
FormFactorCylinder/radius’:5
’>/Multilayer/LayerO/ParticleLayout/ParticleInfo0/abundance’:0.5
>/Multilayer/LayerO/ParticleLayout/ParticleInfo0/depth’:0
>/Multilayer/LayerO/ParticleLayout/ParticleInfol/Particle/
FormFactorPrism3/length’:5
’>/Multilayer/LayerO/ParticlelLayout/ParticleInfol/Particle/
FormFactorPrism3/height ’:5
>/Multilayer/LayerO/ParticlelLayout/ParticleInfol/abundance’:0.5
>/Multilayer/LayerO/ParticleLayout/ParticleInfol/depth’:0

Chapter 3. Simulation

Page 24

MultiLayer

—| Layer #0

L{ ParticleLayout |
Particle Info 0

FormFactorCylinder |

—' Particle Info 1

FormFactorPrism3 |

length 10.0!
heights o)
-~ abundance:0 5}
- depth:0.0;
i corrlength:0.0
 hurst:0.0

Figure 3.3: Tree representation of the sample structure.

Page 25 Example 2: working with sample parameters

’>/Multilayer/LayerO/thickness ’:0
>/Multilayer/Layerl/thickness ’:0
>/Multilayer/LayerInterface/roughness/corrlength’:0
>/Multilayer/LayerInterface/roughness/hurst’:0
’/Multilayer/LayerInterface/roughness/sigma’:0
>/Multilayer/crossCorrLength’:0

Wildcards ’* can be used to reduce typing or to work on a group of parameters. In the
example below, the first command will change the height of all cylinders in the same way,
as in the previous example. The second line will change simultaneously the height of both
cylinders and prisms.

multi_layer.setParameterValue (’>*FormFactorCylinder/height’, 1.0)
multi_layer.setParameterValue (’*xheight’, 1.0)

The complete example described in this section can be found at

./Examples/python/fitting/ex001_SampleParametersIntro/
SampleParametersIntro.py

Chapter 4. Graphical User Interface Page 26

Chapter 4

Graphical User Interface

To be completed.

Page 27

Chapter 5

Scattering cross—section

5.1 Position of the problem

This section describes how assemblies of particles and layers of materials contribute to the
scattering cross—section i.e. the way their spatial distributions, the distribution of shapes
and their correlations or layers’ roughness can influence the output intensity.

The samples generated with BornAgain are made of different layers of materials char-
acterized by their thicknesses, refractive indices, and possible surface roughnesses. Except
for the thickness, the other dimensions of the layers are infinite.

Particles can be embedded in or deposited on the top of any layers. Those particles are
characterized by their shapes, refractive indices, their spatial distribution and concentra-
tion in the sample. The influence of the particles’ shapes is described by the form factors.
When the particles are densely packed, the distance relative to each other becomes of the
same order as the particles’ sizes. The radiation scattered from these various particles are
going to interfere together.

We are first going to give a short overview of the theory involved, mostly in order to define
the terminology. For a more complete theoretical description, the user is referred to, for ex-
ample, reference [?] and appendix[B|of this manual. Then we are going to describe how the
interference features, the form factors and the characteristics of the material layers have
been implemented in BornAgain and give some examples.

5.2 Collection of particles

Let us consider the general geometry of a scattering experiment. An incident neutron with
awave vector k; is scattered in a new direction k after interacting with a particle. This scat-
tering occurs in a cone of solid angle dQ around the direction of the scattered wave vector
ky. Considering a set of N particles labeled with index i, located at R; and having shapes
S;(r) (S; = 0 outside the particle and 1 inside), occupying a total volume V, the differential

Chapter 5. Scattering cross-section Page 28

cross—section per particle is given by:
49 g = = Y |Fi@|*+ Y. Fi@F; (@exp[iq- R;—R)] { .
aQ N |5 Py’ J /

where q = k; — kg is the wave vector transfer and F; is the form factor of particle i (see
Sectionfor a description).

Since in most experimental conditions only the statistical properties of the particles are
known, one can consider the probabilistic value of this cross—section i.e. its expectation
value. Assuming that the particles’ shapes are determined by their class «, with the abun-
dance ratio p, = N, /N, and defining the particle density as py = N/V, the expectation
value becomes:

do B 2 Pv *
<d—Q(q)>—;pa|Fa(q)| +5 ;ﬁpapﬁFa(q)Fﬁ(q)

xffvd3Rad3Rﬁ<ga,ﬁ (Ra,Rp)exp[iq- (Ra —Rp)] ,

where 9, g (Rq, Rﬁ) is called the partial pair correlation function. It represents the nor-
malized probability of finding particles of type @ and § in positions R, and Ry respectively.

5.2.1 Size-distribution models

To proceed further, when the morphology and topology are not exactly known, some hy-
potheses need to be made since the correlation between the kinds of scatterers and their
relative positions included in the pair correlation functions are difficult to estimate. Several
options are available:

Decoupling approximation (DA) neglects all correlations. It supposes that the particles
are positioned in a way that is completely independent on their kinds (shapes, sizes). An
example is given in figure Thus the kind of scattering objects and their positions are
not correlated and the partial pair correlation function is independent of the particle class
a. We can therefore replace 9,4 (Rap) by g(Rep).

This leads to the following expression of the scattering cross-section:

do 2
<E(q)> =14(q) + [{Fa(@),|” x S(@),

where I is the diffuse part of the scattering. It is the signature of the fluctuations of shapes,
sizes or orientations of the particles; its maximum is located in g = 0. In the second term of
the expression of the scattering cross-section, S(q) is the interference function and is given
by

S(g) = 1+pvad3Rg(R)exp[iq'R] :

In concentrated systems, DA breaks down because of correlations. One solution is to
reintroduce some correlations between particles sizes and distributions using, for example,
the size spacing correlation approximation described below.

Page 29

Figure 5.1: Sketch of a collection of particles deposited on a substrate whose scattering
could be described by the decoupled approximation.

Local monodisperse approximation (LMA) partially accounts for some coupling between
the positions and the kinds of the particles [2]. It requires a subdivision of the layers of par-
ticles into monodisperse domains. The contributions of these subdomains are then inco-
herently summed up and weighted by the size-shape probabilities.

In this approximation, a particle is supposed to be surrounded by particles of the same
size and shape, within the coherence length of the input beam (see fig.[5.2). The scattering
cross—section is expressed as

do N 2
<d—Q(q)>—<|Fa(q)| Sa@) .

Contrary to the Decoupling Approximation, the Local Monodisperse Approximation
can account for particle class/size/shape-dependent pair correlation functions by having
distinct interference functions Sy (q).

One has to remember that in most cases, this approximation corresponds to an unphys-
ical description of the investigated systems.

DA and LMA separate the contributions of the form factors and of the interference func-
tion. For disordered systems DA and LMA give the same result as the scattering vector gets
larger i.e. the scattered intensity is dominated by the contribution of the form factor.

Size spacing correlation approximation (SSCA) introduces correlations between poly-
disperse particles, more precisely between the shape/size of the particles and their mutual
spacing. A classical example would consist of particles whose closest-neighbour spacing
depends linearly on the sum of their respective sizes [?].

For a sample where only the statistical properties of particle positions and shape/size
are known, the scattered intensity per scattering particle is expressed as the average over an
ensemble of the Fourier transform of the Patterson function, which is the autocorrelation

Collection of particles

Chapter 5. Scattering cross-section Page 30

SR~ 0 N

(/ O \\ /0 o N\

\ OOO J1 97O

N\ / \O O/
\Q—C;D—___{_\\ ANeJe

- TN

,// O O \\\ //: So \
\ l % oo oo°°
\\\\ O’ //// \\ o_‘;:/

Figure 5.2: Sketch of a collection of particles deposited on a substrate whose scattering
could be described by the local monodisperse correlation approximation. The dashed areas
mark the coherent domains. In this case, the total scattering intensity is the incoherent sum
from all these domains.

of the scattering length density 2(r) = Z,-j Si-reS;jr e O(x+r;— r;):

I(q) = %(9(9(1‘))))

where % denotes the Fourier transform and 22 the Patterson function
dn,n+1=f(Dn' Dn+1)

YWV a Y- aVY-V-N A eV aY-V-V-N A
X Dn Dn+1

Figure 5.3: Sketch of a 1D distributed collection of particles, whose scattering could be de-
scribed by the size-spacing correlation approximation: the distance between two particles
depends on their sizes.

Terminology

For collections of particles, the scattered intensity contains contributions from neigh-
boring particles. This additional pattern can be called the structure factor, the inter-
ference function or even in crystallography, the lattice factor. In this manual, we use
the term "interference function" or interferences.

5.2.2 Layout of particles
The uncorrelated or disordered lattice

For very diluted distributions of particles, the particles are too far apart from each other
to lead to any interference between the waves scattered by each of them. In this case the

Page 31 Collection of particles

interference function is equal to 1. The scattered intensity is then entirely determined by
the form factors of the particles distributed in the sample.

The regular lattice

The particles are positioned at regular intervals generating a layout characterised by its base
vectors a and b (in direct space) and the angle between these two vectors. This lattice can
be two or one-dimensional depending on the characteristics of the particles. For exam-
ple when they are infinitely long, the implementation can be simplified and reduced to a
"pseudo” 1D system.

The ideal paracrystal

A paracrystal, whose notion was developed by Hosemann(?], allows fluctuations of the
lengths and orientations of lattice vectors. Paracrystals can be defined as distorted crys-
tals in which the crystalline order has not disappeared and for which the behavior of the
interference functions at small angles is coherent. It is a transition between the regular lat-
tice and the disordered state.

For example, in one dimension, a paracrystal is generated using the following method.
First we place a particle at the origin. The second particle is put at a distance x with a density
probability p(x) that is peaked at a mean value D: ffgo p(x)dx =1 and ffgo xp(x)dx = D.
The third one is added at a distance y from the second site using the same rule with a den-
sity probability p2(y) = [o p(O)p(y — x)dx = p® p(y).

With such a method, the pair correlation function g(x) is built step by step. Its expression
and the one of its Fourier transform, which is the interference function are

1+P(q))

gX)=6(x)+p)+px)®px)+...+p(=x)+... and S(q) =Re(1 - P(q)

where P(q) is the Fourier transform of the density probability p(x).

In two dimensions, the paracrystal is constructed on a pseudo-regular lattice with base
vectors a and b using the following conditions for the densities of probabilities:
[pa®d?r= [ppx)d?’r=1, [rpa(x)d*r=a, [rpp(r)d’r=D.

In the ideal case the deformations along the two axes are decoupled and each unit cell
should retain a parallelogram shape. The interference function is given by

S(qy) = Ig=a,pRe | ————=
(a1) =Ik=ab e(l Pedy)

) with Py the Fourier transform of pyg, k = a, b.

Probability distributions

The scattering by an ordered lattice gives rise to a series of Bragg peaks situated at the nodes
of the reciprocal lattice. Any divergence from the ideal crystalline case modifies the output
spectrum by, for example, widening or attenuating the Bragg peaks. The influence of these
"defects" can be accounted for in direct space using correlation functions or by truncating

Chapter 5. Scattering cross-section Page 32

the lattice or, in reciprocal space with structure factors or interference functions by convo-
luting the scattered pics with a function which could reproduce the experimental shapes.

5.2.3 Implementation in BornAgain

This section describes the implementation of the interference functions in BornAgain. For
an implementation of all the components of a simulation, the use is referred, for example,
to Section[3.3]

A Remark: In BornAgain the particles are positioned in the same vertical layer.

Size-distribution models

The decoupled approximation, local monodisperse approximation and size spacing corre-
lation approximation can be used in BornAgain. The selection is made using
SimulationParameters() when defining the characteristics of the simulation. For exam-
ple,

simulation Simulation ()

sim_params SimulationParameters ()

interference approx chosen between: DA (default), LMA and SSCA
sim_params.me_if_approx = SimulationParameters.LMA
simulation.setSimulationParameters(sim_params)

Probability distribution functions

The probability distribution functions have been implemented in the reciprocal space in
BornAgain. Their expressions are given in Table[5.1]

Function One dimension Two dimensions
Cauchy 1+ qzwz)_3/2 1+ quccljzc; ZJZ/CZZ)_S;Z
Gauss 5 exp(— quZ) % exp|— M
2,2 _ 2cl2+ gocl? -
Voigt gexp (_q4w)+ (1+;2:2)3/2 ge (— i x4 B y)+ (1+q§cl1)26 +an2,cl)2,)3’2

Table 5.1: List of probability distribution functions in reciprocal space. w, c! stand for co-
herence lengths (the index refers to the axis) and 7 is a weighting coefficient.

The Cauchy distribution corresponds to exp(—r) in real space and the Voigt one is a lin-
ear combination of the Gaussian and Cauchy probability distribution functions.

One dimension

Page 33 Collection of particles

e FTDistributioniDCauchy (w),
e FTDistributionl1DGauss(w),
e FTDistributioniDVoigt (w,n).

where o is the coherence length and 7 is a weighting factor.

Two dimensions

e FTDistribution2DCauchy(cly, cly),
* FTDistribution2DGauss(cly, cly),
* FTDistribution2DVoigt (cly, cly)

where cly,, are the coherence lengths in the x or y direction, respectively.

These functions can be used with all interference functions except the case without any
interference and the one dimensional paracrystal, for which only the Gaussian case has
already been implemented.

Interferences

The interference function is specified when building the sample. It is linked with the par-
ticles (shape, material). Examples of implementation are given at the end of each descrip-
tion.

Syntax: particle_layout.addInterferenceFunction(interference_function),
where particle_layout holds the information about the different shapes and their pro-
portions for a given layer of particles, and interference_function is one of the following
expressions:

e InterferenceFunctionNone ()
e InterferenceFunctioniDLattice(lattice_parameters)

InterferenceFunctionlDParaCrystal (peak_distance, width,corr_length)

InterferenceFunction2DLattice(lattice_parameters)

InterferenceFunction2DParaCrystal(length_1, length_2, a_lattice, ¢,
damping_length)

Remark: InterferenceFunctionlDLattice can only be used for particles which are
infinitely long in one direction of the sample’s surface like for example a rectangular
grating.

Chapter 5. Scattering cross-section Page 34

» InterferenceFunctionNone ()

The particles are placed randomly in the dilute limit and are considered as individual, non-
interacting scatterers. The scattered intensity is function of the form factors only.

Example The sample is made of a substrate on which are deposited half-spheres. Script]5.]]
details the commands necessary to generate such a sample. Figure[5.4]shows an example
of output intensity: Script[5.1]+ detector’s + input beam’s characterizations. The full script
UMlInterferencesNone.py can be found in /Examples/python/UserManual.

Figure 5.4: Output intensity scattered from a sample made of half-spheres with no interfer-
ence between them.

Page 35 Collection of particles

Listing 5.1: Python script to simulate a sample made of half-spheres deposited on a sub-
strate layer without any interference. The part specific to the interferences is marked in red
italic font.

def get_sample():
nmnn
Build and return the sample representing particles with no

interference
mmnn

defining materials

m_ambience = HomogeneousMaterial ("Air", 0.0, 0.0)

m_substrate = HomogeneousMaterial ("Substrate", 6e-6, 2e-8)

m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

collection of particles

sphere_ff = FormFactorTruncatedSphere (5*nanometer , 5%
nanometer)

sphere = Particle(m_particle, sphere_ff)

particle_layout = ParticleLayout ()
particle_layout.addParticle (sphere, 0.0, 1.0)
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction (interference)
assembling the sample

air_layer = Layer (m_ambience)

air_layer.setLayout (particle_layout)

substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()
multi_layer.addLayer (air_layer)
multi_layer.addLayer (substrate_layer)
return multi_layer

Chapter 5. Scattering cross-section Page 36

®» InterferenceFunctionlDLattice(lattice_parameters)

where lattice_parameters=(lattice_length, ¢) with lattice_length is the lattice constant
and ¢ the angle in radian between the lattice unit vector and the x-axis of the "GISAS exper-
iment" referential as shown in fig.

particle

AZ

lattice length

B —————

v
x
g
Vy <

Substrate a

Figure 5.5: Schematic representation of a 1D lattice (side and top views). Such a lattice is
characterized by a lattice length and the angle ¢.

Remark: By default the long axis of the particles in this 1D lattice is along the beam
axis: £ =90°.

A probability distribution function pdf has to be chosen from the list in section in
order to apply some modifications to the scattering peaks. This function is implemented
using setProbabilityDistribution(pdf).

Example: Script[5.2|details how to build in BornAgaina sample using
InterferenceFunctioniDLattice as the interference function. As mentioned previously,
this interference function can only be used with infinitely wide or long particles.

Here the sample is made of infinitely long boxes deposited on a substrate (these particles
are characterized by their widths and heights). They are also rotated by 90° in the sample
surface in order to have their long axis perpendicular to the input beam, which is along the
X-axis.

The lattice parameters (the lattice lengths and angle between the lattice main axis and the
x-axis) are specified using LatticelDIFParameters(). They are then used as input pa-
rameters of the interference function.

Page 37 Collection of particles

Listing 5.2: Python script to generate a sample made of infinitely long boxes deposited on
a substrate layer with the 1DLatticeInterference function. The part specific to the interfer-
ences is marked in red italic font.

def get_sample():

Build and return the sample with 1DLatticeInterference

function
mmnn

defining materials

m_air = HomogeneousMaterial ("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

collection of particles

ff = FormFactorInfLongBox (10.*nanometer, 15.0*nanometer)
box = Particle(m_particle, £ff)

particle_layout = ParticleLayout ()

transform = Transform3D.createRotateZ (90.0xdegree)
particle_layout.addParticle(box, transform)

lattice parameters

lattice_params = LatticelDIFParameters ()
lattice_params.m_length = 30.0*nanometer
lattice_params.m_xzt = 0.0%*degree

interference function

interference = InterferenceFunctionlDLattice(lattice_params)
pdf = FTDistributionlDCauchy (200./2./M_PI*nanometer)
interference.setProbabilityDistribution (pdf)
particle_decoration.addInterferenceFunction (interference)

air layer with particles and substrate form multi layer

air_layer = Layer(m_air)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()
multi_layer.addLayer (air_layer)
multi_layer.addLayer (substrate_layer)
return multi_layer

Chapter 5. Scattering cross-section Page 38

B InterferenceFunctionlDParaCrystal (peak_distance, width, corr_length)

where peak_distance is the average distance to the first neighbor peak,
width is the width parameter of the probability distribution,

corr_length is the correlation length (equal to 0 by default).

For this particular interference function, the implemented probability distribution func-
tion is Gaussian:

2(1)2

(x—D)? q;

1
exp |-
wV2m P (w?

where w =width, D = peak_distance, and g = \/Rez(qx) + Rez(qy) (see ﬁg..

px) =) P(q)) = eXP(—)eXp(ian)

particle1 2 3 4 5

Figure 5.6: Schematic representation of a 1D paracrystal in real space (side view). D is the
average spacing between the particles.

Using the procedure described in Section the interference function of a one-dimensional
paracrystal is given by

S =Re| ———|,
(q)) e(1 - (q))

P if length=0
Where (D(q”) = (q”) 1II corr_ eng

P(q)) exp (— —corr_?ength) otherwise

Figure[5.7]shows the evolution of S(q) for different values of w/D.
Remark In BornAgain the one-dimensional disorder linked with this interference
function is radial.

Example To illustrate the 1D paracrystal interference function, we use the same sample
as in the case without interference: half-spheres deposited on a substrate.

Listing 5.3: Python script to define the 1D paracrystal interference function between half-
spheres, where trsphere is of type Particle.

particle_layout = ParticleLayout ()
particle_layout.addParticle (trsphere, 0.0, 1.0)

Page 39 Collection of particles

40 T T T
5 — w/D=0.05
! — w/D=0.075
30} 5 — w/D=0.1
= 20| :
¥ |
100
%

Figure 5.7: Interference function of a 1D Gaussian paracrystal plotted for different values
of w/D. The peaks broaden with a decreasing amplitude as w/D increases. This shows the
transition between an ordered and a disordered states.

interference = InterferenceFunctionlDParaCrystal (25.0%
nanometer , 7*nanometer, le3*nanometer)
particle_layout.addInterferenceFunction(interference)

Chapter 5. Scattering cross-section Page 40

10

o: >
< [
< S
o -~
= <

2
10

Figure 5.8: Output intensity scattered from a sample made of half-spheres with 1Dparacrys-
tal interference between them. This figure has been generated using Script [5.3| for the in-
terference function. The full script UMInterferences1 DParaCrystal.py can be found in /Ex-
amples/python/UserManual.

B InterferenceFunction2DLattice(lattice_parameters)

where lattice_parameters corresponds to (L, Ly, @, &) (seeillustration in figure|5.9) with
L, L, the lengths of the lattice cell,
a the angle between the lattice basis vectors a,b in direct space,

¢ is the angle defining the lattice orientation (set to 0 by default); it is taken as the an-
gle between the a vector of the lattice basis and the x axis of the "GISAS experiment"
referential (as shown in figure3.1).

Like for the one-dimensional case, a probability distribution function pdf has to be
defined. One can choose between those listed in Section and implements it using
setProbabilityDistribution (pdf).

Example The sample used to run the simulation is made of half-spheres deposited on a
substrate. The interference function is "2Dlattice" and the particles are located at the nodes
of a square lattice with L; = Ly = 20 nm, a = b and the probability distribution function is
Gaussian. We also use the Local Monodisperse Approximation.

Listing 5.4: Python script to define a 2DLattice interference function between hemi-
spherical particles as well as the Local Monodisperse Approximation in getSimulation().
The part specific to the interferences is marked in red italic font.

Page 41 Collection of particles

Figure 5.9: Schematic representation of a 2D lattice (top view). Such a lattice is character-
ized by lattice lengths L;, L, and angles a and ¢.

lattice parameters

lattice_params = Lattice2DIFParameters ()
lattice_params.m_length_1 = 20.0*nanometer
lattice_params.m_length_2 = 20.0*nanometer
lattice_params.m_angle = 90.0*degree
lattice_params.m_xzi = 0.0%*degree

#collection of particles

sphere_ff = FormFactorTruncatedSphere (5*nanometer, 5%
nanometer)

sphere = Particle(m_particle, sphere_ff)

interference = InterferenceFunction2Dlattice(lattice_params)

pdf = FTDistribution2DGauss (200.0*nanometer/2.0/M_PI, 75.0+%
nanometer/2.0/M_PI)
interference.setProbabilityDistribution (pdf)
particle_layout = ParticleLayout ()
particle_layout.addParticle (sphere, 0.0, 1.0)
particle_layout.addInterferenceFunction (interference)

def get_simulation():

Create and return GISAXS simulation with beam and detector

simulation = Simulation ()

simulation.setDetectorParameters (100, 0.0*degree, 2.0*degree,
100, 0.0*degree, 2.0*xdegree, True)

simulation.setBeamParameters (1.0*angstrom, 0.2xdegree, 0.0%

degree)
sim_params= SimulationParameters ()
sim_params.me_tf_approx = SimulationParameters.LMA

simulation.setSimulattionParameters (sim_params)
return simulation

Chapter 5. Scattering cross-section Page 42

2 - 10°
\ N
w]
1.5~

o: - a
- 7
% 1= -5
—_ c
© 110°~

Figure 5.10: Output intensity scattered from a sample made of half-spheres with 2DLat-
tice interference function. Python script available in /Examples/python/UserManual/U-
Minterferences2DLattice.py.

» InterferenceFunction2DParaCrystal(L_1, L_2, lattice_angle, ¢, damping_length)
where L, L, are the lengths of the lattice cell,
lattice_angle the angle between the lattice basis vectors a,b in direct space,
¢ is the angle defining the lattice orientation (set to 0 by default).

damping_length is a "damping" length. It is used to introduce finite size effects by
applying a multiplicative coefficient equal to exp(peak_distance/damping_length)
to the Fourier transform of the probability densities. damping_length is equal to 0
by default and, in this case, no correction is applied.

Two predefined interference functions can also be used:

e createSquare(peak_distance, damping_length, domain_size_1, domain_size_2)
where the angle between the base vectors of the lattice is set to n/2, it creates a
squared lattice,

e createHexagonal (peak_distance, damping_length, domain_size_1, domain_size_2)
where the angle between the base vectors of the lattice is set to 27/3 ,

where domain_sizel, 2 are the dimensions of coherent domains of the paracrystal along
the main axes,
peak_distance is the same in both directions and a = x.

Page 43 Collection of particles

Probability distribution functions have to be defined. As the two-dimensional paracrys-
tal is defined from two independent 1D paracrystals, we need two of these functions, using
setProbabilityDistributions(pdf_1, pdf_2), with pdf_1,2 are related to each main
axis of the paracrystal (see figure[5.11).

V)
A

i
Y

Figure 5.11: Shematics of the ideal 2D paracrystal. The grey-shaded areas mark the
regions where the probability to find a node is larger that the width at half-maximum
of the distribution. L and W are the mean inter-node distances along the two crys-
tallographic axes. cli, w) x,y are the widths of the distribution of distance. The
disorder is propagated as we add more nodes. Such a structure would be generated
using InterferenceFunction2DParacrystal(L,W,90.*degrees,0,damp_length),
with pdf; = FTDistribution2DGauss(clyy,cly,y) and pdf, =
FTDistribution2DGauss (clw,yx,clw,)).

Example The particles deposited on a substrate are half-spheres. The scattered beams
interference via the 2DParacrystal distribution function. The paracrystal is based on a

2D hexagonal lattice with a Gaussian probability distribution function in reciprocal space.
Script[5.5|shows the implementation of the interference function and fig.[5.12Jan example of
output intensity using hemi-spherical particles The full script, UMInterferences2DParacrystal.py
is available in /Examples/python/UserManual.

Listing 5.5: Python script to define a "2DParacrystal” interference function between parti-
cles forming an hexagonal monolayer.

interference = InterferenceFunction2DParaCrystal.
createHexagonal (30.0*nanometer ,0.0, 40.0*micrometer,
40.0*micrometer)

pdf = FTDistribution2DCauchy (1.0*nanometer, 1.0%*nanometer)

interference.setProbabilityDistributions (pdf, pdf)

particle_decoration.addInterferenceFunction (interference)

Chapter 5. Scattering cross-section Page 44

10
10%°
o: >
< [
< g
=) IS
[=4
10

05 1, 15
phi [’

Figure 5.12: Output intensity scattered from a sample made of half-spheres with
2DParacrystal interference function.

5.2.4 Summary

Function Parameters Comments

InterferenceFunctionNone None disordered distribution

InterferenceFunctioniDLattice lattice_length use only with infinitely long/wide particles
&=xa) pdf=(Cauchy, Gauss or Voigt) to be defined

InterferenceFunctionlDParaCrystal peak_distance of pdf
width of pdf

corr_length (optional)

only Gaussian pdf implemented (no option)

InterferenceFunction2DLattice L_1, L_2: lattice lengths
lattice_angle:(?l,\b)
{=xa

pdf=(Cauchy, Gauss or Voigt) to be defined

InterferenceFunction2DParaCrystal L_1,L_2: lattice lengths
lattice_angle:(;,\b)
¢=xa)

damping length (optional)

2D pdf=(Cauchy, Gauss or Voigt) to be defined
(1 pdf per axis)

same for both axes

Table 5.2: List of interference functions implemented in BornAgain. pdf:
vector, and x is the axis vector perpendicular to the detector plane.

probability distribution function, a,b are the lattice base

Gy aded

saponted Jo uonods[o)

Chapter 5. Scattering cross-section Page 46

5.3 Particles - Form factors

5.3.1 Born approximation

In BornAgain the form factor is defined using Born approximation as

F(q)=f exp(iq.r)d°’r, (6.1
v

where V is the volume of the particle, q = k; — k¢ is the scattering vector with ks and k; the
scattered and incident wave vector, respectively.

The particle’s shape is parametrized in a cartesian frame, with its z-axis pointing up-
wards and its origin at the center of the bottom of the particle: r = (x, y, z).

All form factors have been implemented with complex scattering vectors in order to
take any material absorption into account.

Table[5.3lists the shapes whose form factors have been implemented in BornAgain and
a detailed description is given in Appendix|C]

Page 47

Particles - Form factors

Table 5.3: Table of form factors implemented in BornAgain.

Box, Section

Prism3,

SectionlClZl

¥ dJ

Tetrahedron,

Sectionl(l:?l

Prism6,

Section

Conesb,

Section

Pyramid,

Section

Anisotropic
pyramid,

Section

Cuboctahe-
dron,

Sectionlzgl

Cylinder,

Section

Ellipsoidal
cylinder,

Section@

Cone,

Section

Full Sphere,

Section

Truncated
Sphere,

Section

Full Spheroid,

Section

Truncated
Spheroid,

Section

Hemi Ellipsoid,

Section

Ripplel,

Section

A

Ripple2,

Section

-

Chapter 5. Scattering cross-section Page 48

5.3.2 Distorted Wave Born Approximation

Born approximation fails when multiple reflections and refractions have to be taken into
account at interfaces because of the presence of underlying layers of materials and the
closeness of the incident angle «; to the critical angle of total external reflection a.. The
first order correction to the scattering theory is the Distorted Wave Born Approximation
(DWBA), whereas the Born approximation is the zeroth order.

The collective effects between the particles are not considered in this section. They have
been described in Section[5.2] We also do not take any polarization effects into account.
They will be described in...

In the DWBA, the form factor of a particle in a multilayer system is given by

Foweak, kyp,r2) = T; Ty Fga (ki —kp)e' Fi=r% 4 Ry Ty Fya (k; —kp)e! R =kr 7
+ TiRyFpa(k; —kp)e' ®i= k7= o Ry R By (k; —kp)e! Ristkradr= (5.2

where Fgp is the expression of the form factor in the Born approximation, r, is the z-
coordinate of the particle’s position (measured from the bottom of the particle), k; = (k; x, k; y, ki 2)
ky = (k¢ kfy, kr ;) are the incident and scattered wave vectors in air, respectively [2]. With

a tilde (7), these wavevectors components are evaluated in the multilayer system (the re-
fractive indices of the different constituting materials have to be taken into account). Tj,

Tf, Ri, Ry are the transmission and reflection coefficients for the incident wave (index i) or

the scattered one (index f). These coefficients can be calculated using the Parratt formal-

ism [?] or the matrix method [2]. k; — ky is equal to the scattering vector q and the z-axis is
pointing upwards.

Remark: The particles cannot sit in between layers. At most they can be sitting on any
inner interfaces.

In the followings, the DWBA will be illustrated for two different layouts of particles:

e particles deposited on a substrate,

e particles buried in a layer on a substrate.
Remark: In BornAgain there is no limitation to the number of layers composing the
sample.

Particles deposited on a substrate

In this configuration, the particles are sitting on top of a substrate layer, in the air as shown
in fig. In the DWBA the expression of a form factor becomes

Fpwsa(q), ki z kf,2) = Fea(q), ki.z — kf,2) + Ri Fpa(q), —ki,z — kf,2)
+RyeFsa(q), ki +kr,z) + RiRgFpa(qy, —ki z + kf,2), (5.3)

Page 49 Particles - Form factors

where ¢ is the component of the scattering beam in the plane of the interface (q = k; —ky),
ki . and ky . are the z-component of the incident and scattered beam, respectively. R;, Ry
are the reflection coefficients in incidence and reflection. They are defined as

kz+\/n§k(2)—|k|||2

R= , where ng =1—-0 — i is the refractive index of the substrate, ky is
kz =1/ I’l%kg - |I<I|||2

the wavelength in vacuum (27/A), k; and k) are the z-component and the in-plane com-

ponent of k; or ky.

Remark: If the particles are sitting on a multilayered system, the expression of the form
factor in the DWBA is obtained by replacing the Fresnel coefficient by the correspond-
ing coefficients of the underlying layers [2, ?].

Figure illustrates the four scattering processes for a supported particle, taken into
account in the DWBA. The first term of eq.[5.3|corresponds to the Born approximation. Each
term of Fpwpaa is weighted by a Fresnel coefficient.

AZ
W \/g{ air @\/ \/@\/
substrate
Term 1 Term 2 Term 3 Term 4

Figure 5.13: Schematic views of the different terms appearing in the expression of the form
factor under DWBA for particles sitting on a substrate layer.

Script[5.6|illustrates the difference between BA and DWBA in BornAgain when gener-
ating the sample. We consider the simple case of:

 one kind of particles’ shape,
* no interference between the particles,

* in the DWBA, a sample made of a layer of substrate on which are deposited the parti-
cles,

¢ in the BA, a sample composed of the particles in air.

Figure shows the intensity contourplot generated using this script with truncated
spheroids as particles. Note that the full Python script UMFormFactorBA_ DWBA.py is avail-
able in /Examples/Python/UserManual/.

Chapter 5. Scattering cross-section Page 50

Listing 5.6: Python script to generate a sample using Born or Distorted Wave Born Approx-
imation. The difference between BA and DWBA in this simple case is the absence or pres-
ence of a substrate layer in the sample.

def get_sample():
nmnn
Build and return the sample to calculate form factor of
truncated spheroid in Born or Distorted Wave Born
Approximation.

defining materials

m_ambience = HomogeneousMaterial ("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial ("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

collection of particles

ff= FormFactorTruncatedSpheroid (7.5*nanometer, 9.0*nanometer,
1.2)

particleshape = Particle(m_particle, ff)

particle_layout = ParticleLayout ()

particle_layout.addParticle (particleshape, 0.0, 1.0)

interferences
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction(interference)

assembling the sample

air_layer = Layer (m_ambience)
air_layer.setLayout (particle_layout)
substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()

multi_layer.addLayer (air_layer)

Comment the following line out for Born Approximation
multi_layer.addLayer (substrate_layer)

return multi_layer

Page 51 Particles - Form factors

2 10°
10*

15 10*
g s g fos
(=8 (=8
© ©

0.5 10 o

Il
% 1
phi, [°]

(a) Born Approximation (b) DWB Approximation

Figure 5.14: Intensity map of TruncatedSpheroid form factor in BA and DWBA computing
using script[5.6/for the sample.

Remark: In BornAgain, the DWBA is implemented automatically when assembling
the sample with more than the air layer. The user can nevertheless select be-
A tween BA or DWBA using SimulationParameters() when defining the character-
istics of the simulation (it is also the function, with which we can choose between
DA, LMA and SSCA). For example, one could refer to /Examples/Python/UserManu-
al/UM_FormFactors_BA_DWBA_SimulParam.py for a full implementation:

simulation = Simulation ()

sim_params = SimulationParameters ()
choice between BA and DWBA
sim_params.me_framework = SimulationParameters.DWBA

simulation.setSimulationParameters(sim_params)

Buried particles

The system considered in this section consists of particles encapsulated in a layer, which is
sitting on a substrate (see fig.[5.15). In this case the form factor in the DWBA is given by

Fowsa(q), ki z kf,2) = Ti TrFea(qy, kiz — kf,z)ei(ki'z_kf'Z)d +R;i TrFpa(q), —kiz — kf,z)ei(_ki'z_kf'zm
+RpTiFpa(qy, kiz + k)@ 51509 L R Ry Fga (qy, —ki 2 + kg) ! Rizthrd)
(5.4)

i i : j
fo1li2 exp(2ikj ;1) ' o1

Ri= p— = —
J . ’ J ,
1+ ré,l rlj,2 exp(2ikj ;1) 1+ r({’lrlj,2 exp(2ikj ;1)

J=if

Chapter 5. Scattering cross-section

Page 52

where ¢ is the component of the scattering beam in the plane of the interface, k; . and ky .
are the z-component of the incident and scattered beams, respectively. d is the depth at
which the particles are sitting in the layer. Note that this value is given relative to the top of
this layer and it is not the coordinate in the absolute referential (linked with the full sample)
and it is measured up to the bottom of the particle. ¢ is the thickness of the intermediate
layer containing the particles. R; ¢ and T; r are the reflection and transmission coefficients

in incidence and reflection (they can be calculated using Parratt or matrix formalism). r({ 1

J
rth

é | are the reflection and transmission coefficients between layers; the indices are re-

lated to different boundaries with 0: air, 1: intermediate layer and 2: substrate layer and the

superscript j is associated with the incident or scattered beams:

j _ kj,z,n_kj,z,n+1 j ij,z,n

rn,n+1 - ’ nn+l =

n=0,1, j=i,f,

-
kj,z,n_kj,z,n+1 kj,z,n_kj,z,n+1

where index 7 is related to the layers, z to the vertical component, and j to the beams

(incident and outgoing).

z

N N\ // air \

/

7 o \\@\//t

substrate
Term 1 Term 2 Term 3 Term 4

Figure 5.15: Schematic views of the different terms appearing in the expression of the form

factor under the DWBA for buried particles.

Figure shows a typical example of the output intensity scattered from a sample
made of 3 layers: air, substrate, and in between, spherical particles embedded in the mid-
dle of a 30 nm-thick layer. This figure had been generated using listing[5.7] (The full script

UMFormFactor_Buried_ DWBA.py can be found in /Examples/Python/UserManual).

Listing 5.7: Python script to generate a sample where spherical particles are embedded in

the middle of a layer on a substrate.

def get_sample():

Build and return the sample with buried spheres in DWBA.

defining materials

-7)

m_ambience = HomogeneousMaterial ("Air", 0.0, 0.0)

m_interm_layer = HomogeneousMaterial(”IntermLayer",3.45e—6,
5.24e-9)

m_substrate = HomogeneousMaterial ("Substrate", 7.43e-6, 1.72e

Page 53 Particles - Form factors

m_particle = HomogeneousMaterial ("Particle", 0.0, 0.0)

collection of particles

ff = FormFactorFullSphere (10.2*nanometer)
particleshape = Particle(m_particle, £ff)
particle_layout = ParticleLayout ()
particle_layout.addParticle (particleshape ,20.1,1.0)

interferences
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction(interference)

assembling the sample

air_layer = Layer (m_ambience)

intermediate_layer = Layer(m_interm_layer, 30.*nanometer)
intermediate_layer.setLayout (particle_layout)
substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()
multi_layer.addLayer (air_layer)
multi_layer.addLayer (intermediate_layer)
multi_layer.addLayer (substrate_layer)
return multi_layer

(=
o
N

Intensity

0 O_.5 1
phi [’]

Figure 5.16: Map of intensity scattered from a sample made of spherical particles embed-
ded in the middle of a 30 nm-thick layer on a substrate (see Script[5.7]for details about the
sample).

Chapter 5. Scattering cross-section Page 54

Remark: For layers different from the air layer, the top interface is considered as the
reference level to position the encapsulated particles. For example, spheres posi-

A tioned at depth d (positive) are located at a distance d from the top of the layer up to
the bottom of these particles. This convention is different for the top air layer, where
particles sitting at the interface with an underlying layer (i.e. the bottom of the air
layer) are located at depth 0 (see fig.[5.17).

Az

Layer 0: Air O depth=0

Layer 1

depth=d>0
thickness=t>0

depth=t

Layer j

Layer N: Substrate

Figure 5.17: Illustration of the convention about depth used in BornAgain to encapsulate
particles in layers.

Page 55 More complicated particles’ shapes

5.4 More complicated particles’ shapes

BornAgain also offers the possibility to simulate more complicated shapes of particles by
combining those listed in Table[5.3]

5.4.1 Core-shell particles

To generate a core-shell particle, the combination is performed using the following com-
mand:

ParticleCoreShell(shell_particle, core_particle, relative_core_position),
where shell_particle and core_particle are the outer and inner parts of the core-shell
particle, respectively. They refer to one of the form factors defined previously and to an as-
sociated material. For example, for the outer part,

shell_particle=Particle (material_shell, outer_form_factor),

where material_shell is the material of the shell and outer_form_factor is the shape
of the outer part (cf. listing[5.8).

relative_core_position defines the position of the inner shape with respect to the outer
one; it is defined with respect to the centre of the base of the particular form factor. An ex-
ample in fig.[5.18|shows a core shell particle made of a box for the outer part and of a shifted
pyramidal shape for the inner one.

Figure[5.19|displays the output intensity scattered in the Born Approximation using the
code listed in5.8|to generate the core-shell particle. The full script can be found at /Exam-
ples/python/UserManual/UMFormFactor_CoreShell.py.

(a) Side view (b) Top view

Figure 5.18: Example of a core-shell particle composed of a box with a pyramidal inset. The
relative core shell position is marked by the positions of the centres of the bases.

Chapter 5. Scattering cross-section Page 56

Listing 5.8: Python script to create a core-shell particle made of a box with a pyramidal

shifted inset.
outer_ff = FormFactorBox (16.0*nanometer, 16.0*nanometer, 8.0%
nanometer)
inner_ff = FormFactorPyramid (12.0*nanometer, 7.0*nanometer,

60.0*xdegree)
shell_particle = Particle(m_shell, outer_f£ff)
core_particle = Particle(m_core, inner_£ff)
core_position kvector_t (1.5, 0.0, 0.0)

particle = ParticleCoreShell (shell_particle, core_particle,
core_position)

alpha, [°]
IFf°

10

1
phi, [°]

Figure 5.19: Intensity map of a core-shell form factor in Born Approxima-
tion using FormFactorBox(l6*nanometer, l6*nanometer, 8*nanometer) and
FormFactorPyramid (12*nanometer, 7*nanometer, 60*degree) for the outer and
inner shells, respectively. The core particle is shifted by 1.5 nm in the x-direction with
respect to the centre of the outer shell. The sample used to generate the particle is listed
in[5.8] There is no substrate and no interference between the particles.

5.4.2 Rotation of particles

The particles can be rotated in a different direction by using one of the following trans-
formations: CreateRotateX(f), CreateRotateY(f), CreateRotateZ(6f), where capi-
tal X, Y, Z mark rotations around the associated axis and 8 is the angle of rotation from this

Page 57

Material layers

axis. For example, the following Python script shows how to rotate a pyramid by 45° around

the z-axis:

pyramid_£ff =

pyramid = Pa
angle_around
transform =

deg2rad (54.73))
_z = 45.xdegree

particle_layout = ParticleLayout ()
particle_layout.addParticle (pyramid, transform)

FormFactorPyramid (10*nanometer , 5*nanometer,
rticle(m_particle, pyramid_£ff)

Transform3D.createRotateZ (angle_around_z)

5.4.3 Polydispersity

5.5 Material layers

5.5.1 Roughness

5.6 Polarisation

To be completed

Chapter 6. Fitting Page 58

Chapter 6
Fitting

In addition to the simulation of grazing incidence X-ray and neutron scattering by multi-
layered samples, BornAgain also offers the option to fit the numerical model to reference
data by modifying a selection of sample parameters from the numerical model. This aspect
of the software is discussed in the current chapter.

Section [6.1] details the implementation of fittings in BornAgain . Python fitting exam-
ples with detailed explanations of every fitting step are given in Section[6.2} Advanced fitting
techniques, including fine tuning of minimization algorithms, simultaneous fits of differ-
ent data sets, parameters correlation, are covered in Section Sectioncontains some
practical advice, which might help the user to get right answers from BornAgain fitting.

6.1 Implementation in BornAgain

Fitting in BornAgain deals with estimating the optimum parameters in the numerical model
by minimizing the difference between numerical and reference data. The features include

¢ avariety of multidimensional minimization algorithms and strategies.
* the choice over possible fitting parameters, their properties and correlations.

¢ the full control on objective function calculations, including applications of different
normalizations and assignments of different masks and weights to different areas of
reference data.

* the possibility to fit simultaneously an arbitrary number of data sets.

Figure [6.1]shows the general work flow of a typical fitting procedure.
Before running the fitting the user is required to prepare some data and to configure the
fitting kernel of BornAgain . The required stages are

* Preparing the sample and the simulation description (multilayer, beam, detector pa-
rameters).

Page 59

Implementation in BornAgain

User information

Sample
description

Simulation
description

Fitting

BornAgain fitting

Adjusted
parameters

v

parameters

Reference
data

Minimizer
settings

\ 4

FitSuite

Simulation

4—{Minimization} ‘

data

Reference J

Simulated
data
XZ
calculations

/

Fitting
results

¢ Choosing the fitting parameters.

Figure 6.1: Fitting work flow.

* Loading the reference data.

* Defining the minimization settings.

The class FitSuite contains the main functionalities to be used for the fit and serves as
the main interface between the user and the fitting work flow. The later involves iterations

during which

¢ The minimizer makes an assumption about the optimal sample parameters.

* These parameters are propagated to the sample.

* The simulation is performed for the given state of the sample.

* The simulated data (intensities) are propagated to the y*> module.

* The later calculates y? using the simulated and reference data.

* The value of y? is propagated to the minimizer, which makes new assumptions about
optimal sample parameters.

The iteration process is going on under the control of the selected minimization algo-
rithm, without any intervention from the user. It stops

¢ when the maximum number of iteration steps has been exceeded,

Chapter 6. Fitting Page 60

¢ when the function’s minimum has been reached within the tolerance window,
¢ if the minimizer could not improve the values of the parameters.

After the control is returned, fitting results can be retrieved. They consist in the best y?
value found, the corresponding optimal sample parameters and the intensity map simu-
lated with this set of parameters.

Details of FitSuite class implementation and description of each interface are given in
Section ?2. The following parts of this section will detail each of the main stages necessary
to run a fitting procedure.

6.1.1 Preparing the sample and the simulation description

This step is similar for any simulation using BornAgain (see Section[3). It consists in first
characterizing the geometry of the system: the particles (shapes, sizes, refractive indices),
the different layers (thickness, order, refractive index, a possible roughness of the interface),
the interference between the particles and the way they are distributed in the layers (buried
particles or particles sitting on top of a layer). Then we specify the parameters of the input
beam and of the output detector.

6.1.2 Choice of parameters to be fitted

In principle, every parameter used in the construction of the sample can be used as a fit-
ting parameter. For example, the particles’ heights, radii or the layer’s roughness or thick-
ness could be selected using the parameter pool mechanism. This mechanism is explained
in detail in Section and it is therefore recommended to read it before proceeding any
further.

The user specifies selected sample parameters as fit parameters using FitSuite and its
addFitParameter method

fit_suite = FitSuite ()
fit_suite.addFitParameter (<name>, <initial value>, <step>, <
limits>)

where <name> corresponds to the parameter name in the sample’s parameter pool. By us-
ing wildcards in the parameter name, a group of sample parameters, corresponding to the
given pattern, can be associated with a single fitting parameter and fitted simultaneously
to get a common optimal value (see Section 3.4).

The second parameter <initial value> correspond to the initial value of the fitting pa-
rameter, while the third one is responsible to the initial iteration steps size. The last pa-
rameter <AttLimits> corresponds to the boundaries imposed on parameter value. It can
be

e limitless () by default,
e fixed(),

¢ lowerLimited(<min_value>),

Page 61 Implementation in BornAgain

e upperLimited(<max_value>),
e limited(<min_value>, <max_value>).

where <min_value> and <max_value> are double values corresponding to the lower and
higher boundary, respectively.

6.1.3 Associating reference and simulated data

The minimization procedure deals with a pair of reference data (normally associated with
experimental data) and the theoretical model (presented by the sample and the simulation
descriptions).

We assume that the experimental data are a two-dimensional intensity matrix as func-
tion of the output scattering angles a ¢ and ¢ ¢ (see Fig. . The user is required to provide
the data in the form of an ASCII file containing an axes binning description and the inten-
sity data itself.

Remark: We recognize the importance of supporting the most common data formats.
We are going to provide this feature in the following releases and welcome users’ re-
quests on this subject.

To associate the simulation and the reference data to the fitting engine, method
addSimulationAndRealData has to be used as shown

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(<simulation>, <reference>, <
chi2_module >)

Here <simulation> corresponds to a BornAgain simulation object with the sample,
beam and detector fully defined, <reference> corresponds to the experimental data object
obtained from the ASCII file and <chi2_module> is an optional parameter for advanced
control of y? calculations.

It is possible to call this given method more than once to submit more than one pair
of <simulation>, <reference> to the fitting procedure. In this way, simultaneous fits of
some combined data sets are performed.

By using the third parameter, <chi2_module>, different normalizations and weights
can be applied to give user full control of the way y? is calculated. This feature will be
explained in Section|6.3

6.1.4 Minimizer settings

BornAgain contains a variety of minimization engines from ROOT and GSL libraries. They
are listed in Table By default Minuit2 minimizer with default settings will be used and
no additional configuration needs to be done. The remainder of this section explains some
of the expert settings, which can be applied to get better fit results.

The default minimization algorithm can be changed usingMinimizerFactory as shown
below

Chapter 6. Fitting Page 62

fit_suite = FitSuite ()

minimizer = MinimizerFactory.createMinimizer ("<Minimizer name>",
<algorithm>")

fit_suite.setMinimizer (minimizer)

where <Minimizer name> and <algorithm> can be chosen from the first and sec-
ond column of Table respectively. The list of minimization algorithms implemented
in BornAgain can also be obtained using MinimizerFactory.printCatalogue() com-

mand.
Minimizer name Algorithm Description
Minuit2 [?] Migrad According to [?] best minimizer for nearly all functions,
variable-metric method with inexact line search,
a stable metric updating scheme,
and checks for positive-definiteness.
Simplex simplex method of Nelder and Mead
usually slower than Migrad,
rather robust with respect to gross fluctuations in the
function value, gives no reliable information about
parameter errors,
Combined minimization with Migrad
but switches to Simplex if Migrad fails to converge.
Scan not intended to minimize, just scans the function,
one parameter at a time, retains the best value after
each scan
Fumili optimized method for least square and log likelihood
minimizations
GSLMultiMin [?] ConjugateFR Fletcher-Reeves conjugate gradient algorithm,
ConjugatePR Polak-Ribiere conjugate gradient algorithm,
BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm,
BFGS2 improved version of BFGS,
SteepestDescent follows the downhill gradient of the function at each step
GSLLMA [?] Levenberg-Marquardt Algorithm
GSLSimAn [?] Simulated Annealing Algorithm

Table 6.1: List of minimizers implemented in BornAgain.

Page 63 Basic Python fitting example

There are several options common to every minimization algorithm, which can be changed
before starting the minimization. They are handled by MinimizerOptions class:

fit_suite.getMinimizer ().getOptions().setMaxFunctionCalls (10)

In the above code snippet, a number of “maximum function calls”, namely the maximum
number of times the minimizer is allowed to call the simulation, is limited to 10.

There are also expert-level options common for all minimizers as well as a number of
options to tune individual minimization algorithms. They will be explained in Section[6.3]

6.1.5 Running the fitting ant retrieving the results

After the initial configuration of FitSuite has been performed, the fitting can be started
using the command

fit_suite.runFit ()

Depending on the complexity of the sample and the number of free sample parameters
the fitting process can take from tens to thousands of iterations. The results of the fit can
be printed on the screen using the command

fit_suite.printResults ()

Section[6.2]gives more details about how to access the fitting results.

6.2 Basic Python fitting example

In this section we are going to go through a complete example of fitting using BornAgain.
Each step will be associated with a detailed piece of code written in Python. The complete
listing of the script is given in Appendix (see Listing[A.2). The script can also be found at

./Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

This example uses the same sample geometry as in Section[3.3] Cylindrical and prismatic
particles in equal proportion are deposited on a substrate layer, with no interference be-
tween the particles. We consider the following parameters to be unkown

¢ the radius of cylinders,

¢ the height of cylinders,

e the length of the prisms’ triangular basis,
e the height of prisms.

Our reference data are a “noisy” two-dimensional intensity map obtained from the sim-
ulation of the same geometry with a fixed value of 5nm for the height and radius of cylinders
and for the height of prisms which have a 10-nanometer-long side length. Then we run our

Chapter 6. Fitting Page 64

fitting using default minimizer settings starting with a cylinder’s height of 4nm, a cylinder’s
radius of 6nm, a prism’s half side of 6nm and a height equal to 4nm. As a result, the fitting
procedure is able to find the correct value of 5nm for all four parameters.

Importing Python libraries

1 |from libBornAgainCore import *
from libBornAgainFit import x*

We start from importing two BornAgain libraries required to create the sample description
and to run the fitting.

Building the sample

5 |def get_sample():

6 nnn

7 Build the sample representing cylinders and pyramids on top
of substrate without interference.

8 nnn

9 # defining materials

10 m_air = HomogeneousMaterial ("Air", 0.0, 0.0)

11 m_substrate = HomogeneousMaterial ("Substrate", 6e-6, 2e-8)

12 m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

13

14 # collection of particles

15 cylinder_ff = FormFactorCylinder (1.0*nanometer, 1.0*nanometer
)

16 cylinder = Particle(m_particle, cylinder_f£ff)

17 prism_ff = FormFactorPrism3(2.0*nanometer, 1.0*nanometer)

18 prism = Particle(m_particle, prism_ff)

19 particle_layout = ParticleLayout ()

20 particle_layout.addParticle(cylinder, 0.0, 0.5)

21 particle_layout .addParticle (prism, 0.0, 0.5)

22 interference = InterferenceFunctionNone ()

23 particle_layout.addInterferenceFunction(interference)

24

25 # air layer with particles and substrate form multi layer

26 air_layer = Layer(m_air)

27 air_layer.setLayout (particle_layout)

28 substrate_layer = Layer (m_substrate)

29 multi_layer = MultiLayer ()

30 multi_layer.addLayer (air_layer)

31 multi_layer.addLayer (substrate_layer)

32 return multi_layer

The function starting at line[5] creates a multilayered sample with cylinders and prisms us-
ing arbitrary 1nm value for all size’s of particles. The details about the generation of this
multilayered sample are given in Section 3.3}

Page 65 Basic Python fitting example

35
36
37
38
39
40

41

42

45
46
47
48
49
50
51
52
53

55
56
57

Creating the simulation

def get_simulation():

Create GISAXS simulation with beam and detector defined

nmmnn

simulation = Simulation ()

simulation.setDetectorParameters (100, -1.0*degree, 1.0*degree
, 100, 0.0*degree, 2.0*degree, True)

simulation.setBeamParameters (1.0*angstrom, O.2xdegree, 0.0%
degree)

return simulation

The function starting at line[35]creates the simulation object with the definition of the beam
and detector parameters.

Preparing the fitting pair

def run_fitting():

run fitting

nmmn

sample = get_sample ()
simulation = get_simulation ()
simulation.setSample (sample)

real_data = OutputDatalOFactory.readIntensityData(’
refdata_fitcylinderprisms.txt’)

Lines [61]generate the sample and simulation description and assign the sample to the
simulation. Our reference data are contained in the file >’refdata_fitcylinderprisms.txt’.
This reference had been generated by adding noise on the scattered intensity from a numer-
ical sample with a fixed length of 5 nm for the four fitting parameters (i.e. the dimensions

of the cylinders and prisms). Line [53|creates the real data object by loading the ASCII data
from the input file.

Setting up FitSuite

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(simulation, real_data)
fit_suite.initPrint (10)

Line [55|creates a FitSuite object which provides the main interface to the minimization
kernel of BornAgain . Line submits simulation description and real data pair to the
subsequent fitting. Line [57|sets up FitSuite to print on the screen the information about
fit progress once per 10 iterations.

Chapter 6. Fitting

Page 66

60

61

62

63

66
67
68
69
70
71
72
73

fit_suite.addFitParameter ("*FormFactorCylinder/height", 4.x
nanometer, O0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorCylinder/radius", 6.x*
nanometer, O0.0l*nanometer , AttLimits.lowerLimited (0.01))

fit_suite.addFitParameter ("*FormFactorPrism3/height", 4.%

nanometer, O0.0l*nanometer, AttLimits.lowerLimited (0.01))

fit_suite.addFitParameter ("*FormFactorPrism3/length", 12.x*

nanometer, 0.02*nanometer, AttLimits.lowerLimited (0.01))

Lines enter the list of fitting parameters. Here we use the cylinders’ height and
radius and the prisms’ height and side length. The cylinder’s length and prism half side are
initially equal to 4nm, whereas the cylinder’s radius and the prism half side length are equal
to 6nm before the minimization. The iteration step is equal to 0.01 nm and only the lower

boundary is imposed to be equal to 0.01 nm.

Running the fit and accessing results

fit_suite.runFit ()

print "Fitting completed."
fit_suite.printResults ()
print "chi2:", fit_suite.getMinimizer ().getMinValue ()
fitpars = fit_suite.getFitParameters ()
for i in range(0, fitpars.size()):
print fitpars[i].getName (), fitpars[i].getValue(),
fitpars[i].getError ()

Line [66/shows the command to start the fitting process. During the fitting the progress will
be displayed on the screen. Lines shows different ways of accessing the fit results.

More details about fitting, access to its results and visualization of the fit progress using

matplotlib libraries can be learned from the following detailed example

./Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms_detailed.py

Page 67 Advanced fitting

6.3 Advanced fitting

6.3.1 Affecting y2 calculations

6.3.2 Simultaneous fits of several data sets
6.3.3 Using fitting strategies

6.3.4 Masking the real data

6.3.5 Tuning fitting algorithms

6.3.6 Fitting with correlated sample parameters
6.4 How to get the right answer from fitting

One of the main difficulties in fitting the data with the model is the presence of multiple
local minima in the objective function. Many problems can cause the fit to fail, for example:

¢ an unreliable physical model,
* an unappropriate choice of objective function
e multiple local minima,

¢ an unphysical behavior of the objective function, unphysical regions in the parame-
ters space,

¢ an unreliable parameter error calculation in the presence of limits on the parameter
value,

¢ an exponential behavior of the objective function and the corresponding numerical
inaccuracies, excessive numerical roundoff in the calculation of its value and deriva-
tives,

* large correlations between parameters,
* very different scales of parameters involved in the calculation,
* not positive definite error matrix even at minimum.

The given list, of course, is not only related to BornAgain fitting. It remains applicable
to any fitting program and any kind of theoretical model. Below we give some recommen-
dations which might help the user to achieve reliable fit results.

General recommendations

¢ initially choose a small number of free fitting parameters,

¢ eliminate redundant parameters,

Chapter 6. Fitting Page 68

* provide a good initial guess for the fit parameters,

e start from the default minimizer settings and perform some fine tuning after some
experience has been acquired,

* repeat the fit using different starting values for the parameters or their limits,

* repeat the fit, fixing and varying different groups of parameters,

to be continued...

Page 69

Chapter 7

Software architecture

BornAgain is written in C++ and uses an object oriented approach to achieve modular-
ity, extensibility and transparency. This leads to the task driven rather than the command
driven approach in different aspects of the simulation and fitting of GISAS data. The user
defines the sample structure, beam and detector characteristics and fit parameters using
building blocks — classes - defined in core libraries of the framework. These buildings
blocks are combined by the user according to his current task using one the following ap-
proaches:

¢ The user creates a Python script with a sample description and simulation settings
using the BornAgain API. The user then runs the simulation by executing the scriptin
the Python interpreter and assesses the simulation results using his preferred graph-
ics or analysis library, e.g. Python + numpy + matplotlib.

* The user may write a standalone C++ application linked to the BornAgain libraries.

* The user interacts with the framework through a graphical user interface (forthcom-
ing).

The object oriented approach in the software design allows users to have a much higher
level of flexibility in the sample construction; it also decouples the building blocks used in
the internal calculations and thereby facilitates the creation of new models, with little or no
modification to the existing code.

The general structure of BornAgain and the way the user interacts with it are shown in
Fig. The framework consists of two shared libraries, 1ibBornAgainCore and 1ibBornAgainFit.
Thanks to the Python interface they can be imported into Python as external modules. The
library 1ibBornAgainCore contains a number of classes, grouped into several class cat-
egories, necessary for the description of a model and running a simulation. The library
1libBornAgainFit contains a number of minimization engines and interfaces to them, al-
lowing the user to fit real data with the model previously defined.

BornAgain depends on a few external and well established open-source libraries: boost,
GNU scientific library, Eigen and Fast Fourier Transformation libraries. They are required
to be installed on the system to run BornAgain on Unix Platforms. In the case of Windows

Chapter 7. Software architecture

Page 70

User

python script

BornAgain

External
graphics

python bindings

python bindings

libCore

libFit

samples and algorithms minimizers
T
preveeeees
fftw < > gsl Y
ROOT -«

boost < > eigen

Figure 7.1: Structure of BornAgain libraries.

matplotlib

Platform they are added to the system automatically during BornAgain installation. Other
libraries shown on the plot (ROOT, matplotlib) are optional.

Page 71

Appendix A

Listings

A.1 Python simulation example

The following script can be found at

./Examples/python/simulation/ex001_CylindersAndPrisms/

CylindersAndPrisms.py

© 0 N O WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import numpy

import matplotlib

import pylab

from libBornAgainCore import *

def get_sample():

non

Build and return the sample representing cylinders and
pyramids on top of
substrate without interference.

nmmn

defining materials

m_air = HomogeneousMaterial ("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial ("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

collection of particles

cylinder_ff = FormFactorCylinder (5*nanometer, 5xnanometer)
cylinder = Particle(m_particle, cylinder_f£ff)

prism_ff = FormFactorPrism3 (10*nanometer, 5*nanometer)
prism = Particle(m_particle, prism_£ff)

particle_layout = ParticleLayout ()
particle_layout.addParticle(cylinder, 0.0, 0.5)
particle_layout.addParticle(prism, 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction(interference)

Appendix A. Listings Page 72

27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43

44

45
46
47
48
49
50
51
52
53
54
55
56

57

58
59
60
61
62

def

def

if

air layer with particles and substrate form multi layer
air_layer = Layer(m_air)

air_layer.setLayout (particle_layout)

substrate_layer = Layer(m_substrate, 0)

multi_layer = MultiLayer ()

multi_layer.addLayer (air_layer)

multi_layer.addLayer (substrate_layer)

return multi_layer

get_simulation():

Create and return GISAXS simulation with beam and detector

defined
nnn
simulation = Simulation()
simulation.setDetectorParameters (100, -1.0*degree, 1.0*degree

, 100, 0.0*xdegree, 2.0*degree, True)
simulation.setBeamParameters (1.0*%angstrom, 0.2xdegree, 0.0%
degree)
return simulation

run_simulation () :

Run simulation and plot results

sample = get_sample ()

simulation = get_simulation ()

simulation.setSample (sample)

simulation.runSimulation ()

result = simulation.getIntensityData().getArray() + 1 # for
log scale

pylab.imshow (numpy.rot90 (result, 1), norm=matplotlib.colors.
LogNorm (), extent=[-1.0, 1.0, 0, 2.0])

pylab.show ()

name == main__"7:

run_simulation ()

Page 73

Python fitting example

~N O Ok N

(00]

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

A.2 Python fitting example

The following script can be found at

./Examples/python/fitting/ex002_FitCylindersAndPrisms/

FitCylindersAndPrisms.py

from libBornAgainCore import x*
from libBornAgainFit import x*

def

def

get_sample () :

Build the sample representing cylinders and pyramids on top

of substrate without interference.
mmnn

defining materials

m_air = HomogeneousMaterial ("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial ("Particle", 6e-4, 2e-8)

collection of particles

cylinder_ff = FormFactorCylinder (1.0*nanometer, 1.0*nanometer
)

cylinder = Particle(m_particle, cylinder_f£ff)

prism_ff = FormFactorPrism3(2.0*nanometer, 1.0*nanometer)

prism = Particle(m_particle, prism_ff)

particle_layout = ParticleLayout ()
particle_layout.addParticle(cylinder, 0.0, 0.5)
particle_layout.addParticle(prism, 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction(interference)

air layer with particles and substrate form multi layer
air_layer = Layer(m_air)

air_layer.setLayout (particle_layout)

substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()

multi_layer.addLayer (air_layer)

multi_layer.addLayer (substrate_layer)

return multi_layer

get_simulation () :

Create GISAXS simulation with beam and detector defined

nmmn

simulation = Simulation ()

simulation.setDetectorParameters (100, -1.0*degree, 1.0*degree
, 100, 0.0*degree, 2.0*degree, True)

Appendix A. Listings

Page 74

41

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60

61

62

63

64
65
66
67
68
69
70
71
72
73

74
75
76

def

if

simulation.setBeamParameters (1.0*angstrom, 0.2xdegree, 0.0%
degree)
return simulation

run_fitting():

run fitting

nmnn

sample = get_sample ()
simulation = get_simulation()
simulation.setSample (sample)

real_data = QOutputDatalOFactory.readIntensityData(’
refdata_fitcylinderprisms.txt’)

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(simulation, real_data)
fit_suite.initPrint (10)

setting fitting parameters with starting values
fit_suite.addFitParameter ("*FormFactorCylinder/height", 4.x
nanometer, O0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorCylinder/radius", 6.x*
nanometer, 0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorPrism3/height", 4.x
nanometer , 0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorPrism3/length", 12.%*
nanometer, 0.02*nanometer, AttLimits.lowerLimited (0.01))

running fit
fit_suite.runFit ()

print "Fitting completed."
fit_suite.printResults ()
print "chi2:", fit_suite.getMinimizer ().getMinValue ()
fitpars = fit_suite.getFitParameters ()
for i in range(0, fitpars.size()):
print fitpars[i].getName (), fitpars[i].getValue(),
fitpars[i].getError ()

name__ == main__":

run_fitting ()

Page 75

Appendix B

Theory

B.1 Scattering on nanoparticles - Formal treatment

B.1.1 Green operators and the T-matrix

For a particle, governed by the Schrédinger equation with Hamiltonian H = Hy + V, the

time—independent scattering theory formally consists of solving the eigenvalue equations:
HY o =Eq¥Yq,

with E the scalar energy eigenvalue of the eigenstate W (E).
If the solutions of the free (or unperturbed) Hamiltonian Hy are known:

HyW¥oo = Eq¥oq,

one can write the solutions of the full Hamiltonian in terms of these asymptotic states and
Green operators:

WE =W+ Gy VY,
=Woq + GV Wq,

where the Green operators are defined as:

GI(E)=(E-Hy+ie)!
GYHE)=(E-H=+ie)™'.

In these equations, the upper index or sign refers to the state corresponding with the free
state Wy, at time t — —oo (and vice-versa for the lower sign). Since the solutions of the
eigenvalue equations, both for the unperturbed as for the full Hamiltonian, are dependent
on the energy eigenvalue E, the index « is assumed to include this value (and possibly other
quantum numbers).

Appendix B. Theory Page 76

The transition amplitude between two asymptotic states is given by the S—matrix ele-
ments, defined as:

Sap = (PoplSWoq)
= (W51v8) . (B.1)

The S-matrix can be decomposed into a delta function, representing the absence of
scattering, and a T-matrix that encodes the scattering part, caused by the potential V:

Sap =08(Ea—Ep)dap—2mid(Ea—Ep) Ty,
with
Tap=(PoplVI¥g)
Ty = <‘I’B|V|‘I’0a> .

On the energy shell E, = Eg, one has T ;ﬁ = T‘;ﬁ, so that both formulations are equivalent.

By expanding the eigenstates W3 in these equations, the T-matrix elements (on-shell)
can be expressed as:

+ _ +
T =V+VG'V.

B.1.2 Momentum representation and the scattering cross-section

The previous general formulas can also be presented in a momentum (and positon) eigen-
basis, defined by:

P|k) = hik|k)
(K'k) =6k -k
1= f d*k|k) (K|

lzfdsrlr)(rl
|k = 2m) "2 exp(ik-1),

where the normalization in the last equation follows from the other definitions.
The wavefunction that evolves from a momentum eigenstate |k;) can then be written
as:
(rl¥™) = (rlk;) + (rlGy Tlk;)

which in the far—field limit becomes:

2 iker
ikr 4mtm e’

\P+ — 2 -3/2
(r¥*) = (2m) e 2 p

(kyITlk;)

. ikff
elki.r+f(6’¢)€ .] ,

Page 77 Small angle approximation

where the scattering amplitude was defined as

47rm

fO,¢)=

The amount of particles per unit time that are scattered in a small solid angle dS2 in
direction k f will then be (still in the far—field limit):

dIscat =]o|f(9,</))|2dQ,

where Jj denotes the incident flux density. The scattering cross—section is defined as:

do d scat
dQ Jo dQ

(kr|Tlk;) .

=1f6,).

B.2 Small angle approximation

In the case of pure nuclear scattering, the Hamiltonian describing a neutron in a scattering
2

experiment, is given by H = —Z—A + V, where
m

2h?

V= m ps(r)»

with p;(r) the scattering length density of the sample. This scattering length density typ-
ically consists of a sum of weighted delta—functions, peaked at the atomic postions of the
sample. For small scattering angles, the Bragg condition will not be fulfilled and the scat-
tering length density may be replaced by a continuous function, representing the average
scattering length density. In this case, one can define a refractive index, which in general
will also be a continuous function of the position in the sample:

nr=1- k—ops(l'),

with ky the wavevector in vacuum, or alternatively ko = 27/, with A the de Broglie wave-
length of the neutron.
Substituting this refractive index in the potential then gives:

V(r)—h—zkz(l— 2(r))

Using these definitions, one can rescale the Hamiltonian with a factor 2m/ K2, such that
H=-A+V
V(r) =4mps(r) = k2(1 - n*(r).
It should be noted that this Hamiltonian implicitly contains the energy eigenvalue (Ey, =
(hko)?/2m), so that it can only be used in the time-independent Schrédinger equation

HY,=E,Y¥Y,.
The T-matrix then also becomes rescaled and the scattering amplitude becomes:

f0,¢) =27 (kI Tk;) .

Appendix B. Theory Page 78

B.3 Born approximation

Consider a scattering volume V, containing N scattering centers with shape functions S i(r),
positions R? and scattering length density p (relative to the ambient material).
In the Born approximation (T = V), the scattering amplitude is

1O,¢) = —871> (k¢lps (1) ks)
:—fdsreiq'rps(r),

where q = k; —k denotes the wavevector transfer and
Ko
r=—(1-n*@r).
ps(r) an ((r)
The differential cross—section (per scattering center) is then given by:

do 2

== _l iqr 43
dQ(q)—NUVpS(r)e a’r

Following the initial assumptions. the scattering length density can be written as:

ps0) =3 psiS' M@ -R),

with p; ; the scattering length density of particle i. The cross—section then becomes:

N ()= |3 F(qexpliq-R) 2
qu_ : q)expliq

, 2 , . . .
={Z F’(q)’ +Y F{(QF/*(gexp iq~(R’—R1)]}.
i i#j

In the last expression, the formfactors F!(q) are the Fourier transforms of the shape func-
tions, including their scattering length densities:

Fi(q) = f de‘rpsyiS"(r) exp(iq-r).
1%
Since in most real conditions only the statistical properties of the particles are known,
one can consider the expectation value of this cross-section. Assuming that the particles’

shapes are determined by their class a, with abundance ratio p, = N, /N, and defining the
particle density py = N/V, the expectation value becomes:

do 2 pv *
<E(q)> = ;pa [Fal@|"+ 37 ;ﬁpapﬁFa(q)Fﬁ @

xffvdf‘RadsRﬁ%ﬁ (Ra,Rp)exp [iq- (Ro —Rp)]

Page 79 Born approximation

In this equation, the factor 4, g (Ra,Rﬁ) is called the partial pair correlation function
and it represents a normalized probability of finding particles of type a@ and § in positions
R, and Ry respectively. More precisely, the probability density for finding a particle a at
position R, and another one of type § at Ry is given by:

P(a, Ra;ﬁ’Rﬁ) = p%/papﬁ(ga,ﬁ (Ra» Rﬁ) .

B.3.1 General formulas

Even in the most general case, the partial pair correlation function will only depend on the
difference Ryp = (Rq — Rp) of the particles’ positions. One of the volume integrals can then
be dropped, together with the volume factor, giving:

d
<d_§02(q)> =Y el Fa@[*+pv Y pappFel@F; (@
a apB

Xﬂ/ngaﬁgaﬁ (Raﬁ)exp[iq-Raﬁ] .

This expression can be split into a diffuse part, which by definition should be zero for
the case of only one particle type, and a coherent part, resulting from the coherent super-
position of scattering amplitudes for particles at different positions:

—(q)) =I15(q@ +(Fa (@) Sas(q F; q
VQ() d(q) < a(q) aﬁ() ﬁ()> ’
where

L@ = (|Fa@[*), ~|(Fa@),|*,

Sap@ =1+py fv d’RapGap (Rap) exp[iq-Rap] .

Sap(q) is called the interference function and (...) is the expectation value over the classes

{a}.

B.3.2 Decoupling approximation

When the partial pair correlation function is independent of the particle class @ (4qp (Rap) =
g(Rgp)), the scattering cross-section becomes:

<E(q)>zld(q)+|<1: @),|° xS
1719) @ @ ’

where
S(q) = 1+pvad3Rg(R)exp[iq-R] .

Appendix B. Theory Page 80

B.3.3 Local Monodisperse Approximation

By assuming that inside every coherence region of the beam, the particle class (or size/shape)
is fixed, the cross—section will consist of an incoherent superposition of these different co-
herence regions and can be written as:

do N 2
<d—Q(q)> = (|Fa(@[*Sat@) -

Contrary to the Decoupling Approximation, the Local Monodisperse Approximation
can account for particle class/size/shape-dependent pair correlation functions by having
distinct interference functions S (q).

B.3.4 Size-Spacing Correlation Approximation

In the Size-Spacing Correlation Approximation, a correlation is assumed between the shape/-
size of the particles and their mutual spacing. A classical example would consist of particles
whose closest-neighbour spacing depends linearly on the sum of their respective sizes. The
following discussion of this type of correlation is inspired by [?]

The scattered intensity can also be calculated as the Fourier transform of the Patterson
function, which is the autocorrelation of the scattering length density:

Pr)=) Si(-1eS;M)esr+r—r;).
ij
For a sample where only the statistical properties of particle positions and shape/size are

known, the scattered intensity per scattering particle becomes average over an ensemble of
the Fourier transform of the Patterson function:

I(q) = %(9‘(9’&))))

where & denotes the Fourier transform.
The ensemble averaged Patterson function will be denoted as:

1
Z(r)= —(2(1) .
N
In the case of systems where the particles are aligned in one dimension, this autocorrelation
function can be further split into nearest neighbour probabilities. First, it is split into terms
for negative, zero or positive distance:

Z)=z0m)+ 2z, () +2z_(r).

Taking x as the coordinate in the direction in which the particles are arranged and s as an

Page 81 Born approximation

orthogonal coordinate (r = (x, s)), one obtains:

20() =) p(@0)Say(—X,—$) ® S, (X, 8)

Qo

z+(X) =) p(ao,a1)Sa,(—x,—5) ® S, (x,5) ® Py (x|agar)

Qo

+) pla, a1,a2)Say(—X,—5) ® S, (X,) ® Py (x|aga) ® Pp(xlaga az)
Qo

+ ...

z_(r)=2z,(-1),

where p(ay,...,a@,) denotes the probability of having a sequence of particles of the indi-
cated sizes/shapes and P, (x|ay... @) is the probability density of having a particle of type
a, at a (positive) distance x of its nearest neighbour of type a,—; in a sequence of the given
order.

In the Size-Spacing Correlation Approximation, one assumes that the particle sequence
probabilities are just a product of their individual fractions:

p(aO;---;an) :Hp(al);

and the nearest neighbour distance distribution is dependent only on the two particles in-
volved:
Py(xlag...an) = Pi(xlay-1ay) .

Furthermore, the distance distribution P; (x|@ga;) depends on the particle sizes/shapes
only through its mean value D:

P (xlapa) = Po(x — D(ap, a1)),

where D(ag, @) = Do +x [AR(ag) + AR(a1)], with AR(a;) the deviation of a size parameter
of particle i with respect to the mean over all particles sizes/shapes and x the coupling
parameter.

In momentum space, the sum of convolutions can be written as a geometric series,
which can be exactly calculated to be:

_ Q
I(q)=<|Fa(q)|2>a+2Re{%(q)%?(q)- . 9 }

(B.2)
Pax (@ [1 - Qx(q)]

with
5 (@ =fda p(a)ei*1AR@
(@ = poc(@pl@e’ >
F(q = f da p(a)Fy(qe™ 1@,
and the Fourier transform of P; (x|aga;) is

P(q) = P(q) 2! 4xDo oK qx[AR(ao)+AR(e1)]

Appendix B. Theory Page 82

Using the result from the one-dimensional analysis, one can apply this formula ad hoc
for distributions of particles in a plane, where the coordinate x will now be replaced with
(x,y), while the s coordinate encodes a position in the remaining orthogonal direction. One
must be aware however that this constitutes a further approximation, since this type of
correlation does not have a general solution in more than one dimension.

The intensity in equation will contain a Dirac delta function contribution, caused
by taking an infinite sum of terms that are perfectly correlated at q = 0. One can lever-
age this behaviour by multiplying the nearest neighbour distribution by a constant factor
e~P/A which removes the division by zero in equation . Another way of dealing with
this infinity at q = 0 consists of taking only a finite number of terms, in which case the geo-
metric series still has an analytical solution, but becomes a bit more cumbersome:

3 [(1 1) Ol 103 1-0Y @)

1 -
1@ =(|F@f), +2Re{ = F@F @
a P (q)
N1-0@ N (1-0cq) } '
This expression has a well-defined limit for Q,(q) — 1 (when q — 0), namely:
lim I(q) = (IF(0)1*),, + (N = 1) [{F (0))4|* .

B.4 Distorted Wave Born Approximation

In this section, one proceeds along similar lines as in the formal treatment of section
This time however, the full Hamiltonian is written as H, = Hy + V5 = Hy + V; + V5, where H,
will again refer to the free Hamiltonian. In the distorted wave Born approximation (DWBA),
one performs a perturbative expansion around the solutions of the Hamiltonian H;, which
are assumed to be known:

Hy¥5, = Eo ¥,
Y1, = You+ GT V1¥oq,
where the Green operators are defined to be:
Gi=(E-Hy+ie)™!
Gi=(E-Hy+ie) ',

The T-matrix element for scattering between the asymptotic states ¥y, and Wog (note
that these asymptotic states refer to the free Hamiltonian Hp), is:

T;ﬁ =(Wopl Vi + VoI ¥)
=(YoplVi + Va|¥oa + Gf Vi¥oa + G, Vo ¥,
=(YopIVil¥1,) + (Yosl (ViG] + DV |¥y)
=(WoplVil¥7,) + <‘I’1—/3|V2|‘PZ>

= (YoplVil¥T,) + (Vi I,)

Page 83 Distorted Wave Born Approximation

with T = V> + VG5 V. By approximating this last term using 7> = V5, one arrives at the
distorted wave Born approximation:

Tis= (Wopl Vil o)+ (WiglVal) -

B.4.1 Multilayer systems

In multilayer systems, the first term of equation denotes the specular part of the re-
flection, while the second term is responsible for the off-specular scattering. This off-
specular part is caused by deviations from the perfectly smooth layered system, as e.g. in-
terface roughnesses or included nanoparticles. In here only the case of nanoparticles will
be treated.

In the conventions where H = —A + V, the potential splits into two parts V; and V,,
where only the second part is treated as a perturbation:

Vi=ki(1-nim)
V=Y K (m®R) - n?)S' @ s-R)),
i
where ny(r) denotes the refractive index of the unperturbed system (which, in case of a
multilayer system, will only depend on its z—coordinate) and n; is the refractive index of
the nanoparticle with shape function S’ and position R’.

For nanoparticles in a specific layer j, i.e. V» # 0 only in layer j, one only needs the
unperturbed solutions in layer j:

(¥,) = @m 2 | Ryt e™in 0™ 4 7 oo 07|
<\I’1_kf|l'> = (2m) 32 [Rj(—kf)e"km(‘kf)'r + Tj(—kf)e“‘fvT(‘kf“] :
The off-specular contribution to the scattering amplitude then becomes:

_ 3 Va(r)

+ Tinei(kj'i_kj'f)'r + Rinei(kj'i_kj'f)'r ,

[Ti Tfei(kj,i—kj,f)'r+Ri Tfei(kj,i—kj,f)'l‘

where the following shorthand notations were used:

Ti=T;jk;) R;i=Rj(k;)

Ty = Tj(-kj) Rp=R;(-kj)
k; i =k; r(k;) Ej,i =k; rk;)
kj = -kjr(-ky) kjr = -kjr(-kp).

From this expression, one sees that the scattering amplitude consists of a weighted sum
of Fourier transforms of the potential V,. Using

Vo(£) =) 47ps 1S’ (1) @ 5(r— R,
i

Appendix B. Theory Page 84

with g rer,i = k3 (n3(R") — n?) /47, the scattering amplitude becomes
fO,¢) = —ZPs,rel,iglgw]gA(kj,i’kj,f»R;)ei(kf"'” ~kj)R ,
1
with
Fhweaki kp, Ry) = T TrF (k; —kp)e' Fi== kR o R, 7o Fl (k; — k) ! hizkro)Re
+ T;RpF (k; —kp)e' %=t kR o R R (kg —Kp)e! CRisthrdRe

With this last expression, the same techniques as demonstrated in section [B.3| can be
applied, leading to the following expression for the expectation value of the scattering cross—
section:

do
< dQ i Off-specular

2 Ps *
= ;Pa | Fak;i K f Ra,2)|” + 3 Zﬁ,papﬁga (Kj,isKj, f) Ra,2)F 5 (Kji, Kj r, Rp,2)
a,

2pl 22l I gl [I _gl
xffsd RbaRhG, 5 (R o, Rls)expiq; - R -RE)| .
The main differences with respect to the cross—section in the Born approximation are:

1. The particle form factor now consists of a more complex expression and now de-
pends on both incoming and outgoing wavevectors and also on the z—coordinate of
the particle;

2. Since the z—coordinate of the particles is implicitly included in its formfactor, the
position integrals only run over x— and y—coordinates and the volume and density
gets replaced with the surface area and surface density respectively.

Page 85

Appendix C

Form factors

In BornAgain the expression of the form factor has been implemented in the Born approx-
imation. Each of them is defined as

F(q) :f exp(iq.r)d?’r,
1%

where V is the volume of the particle’s shape, q = k; —k is the scattering vector with kr and
k; the scattered and incident wave vector, respectively. The Distorted Wave Born Approxi-
mation can be taken into account as it has been explained in Section

The particle’s shape is parametrized in a cartesian frame, with its z-axis pointing up-
wards and its origin at the center of the bottom of the particle: r = (x, y, z). In the followings,
a schematic view will depict this layout for each form factor.

All form factors have been implemented with complex scattering vectors in order to
take any material absorption into account.

Appendix C. Form factors

C.1 Box

Real-space geometry
This shape is a rectangular cuboid as shown in fig.[C.1]

Page 86

xY

(a) Side view

Figure C.1: Sketch of a Box.

Parameters:
¢ length of the base L,
e width of the base W,
¢ height H.
Properties:
e volume V=LWH,

e particle surface seen from above S = LW.

Expression of the form factor

L
(b) Top view

. H) | L\ . Wy . H
F(q,L,W,H)=LW Hexp (lqzz) smc(qxz) smc(qy?) smc(ng),

where sinc(x) = sin(x)/ x is the cardinal sine.

Syntax: FormFactorBox(length, width, height)

xY

Page 87 Box

Example
Figure shows the normalized intensity |F 12/v2, computed with L =20 nm, W = 16 nm,
and H =13 nm:

Figure C.2: Normalized intensity for the form factor of a Box plotted against (qy, q.)
and (qx, qy) and computed with FormFactorBox(20.*nanometer, 16.*nanometer,
13.*nanometer).

Appendix C. Form factors Page 88

C.2 Prism3

Real-space geometry
This shape is a triangular prism, whose base is an equilateral triangle as shown in fig.

<Y
—

(a) Side view (b) Top view

Figure C.3: Sketch of a Prism3.

Parameters:
¢ length L of one side of the base,

* height H.

Properties:

V3

e volume V = THLZ,

3
e particle surface seen from above S = %Lz.

Expression of the form factor

L L L L
exp (i\/gqyg) —Cos (CIxE) - i\/gqyg sinc (CIxE)

F(LH)——\/_ ex (—iq)
stinc(q —)exp(iq —)
.22 Z2)

where sinc(x) = sin(x)/x is the cardinal sine.

Syntax: FormFactorPrism3(length, height)

Page 89

Prism3
Example

Figureshows the normalized intensity |F 12/V2, computed with L = 10nm and H = 13 nm.

S |FIVP
S

Figure C.4: Normalized intensity for the form factor of a Prism3 plotted against (g, ¢.) and
(gx, gy) and computed with FormFactorPrism3(10.*nanometer, 13.*nanometer).

Appendix C. Form factors Page 90

C.3 Tetrahedron

Real-space geometry
This shape is a truncated tetrahedron as shown in fig.

AY
4 4
L
X
H
p
I 1
> L
X
(a) Side view (b) Top view

Figure C.5: Sketch of a Tetrahedron. The implementation of this shape uses angle a, which
is linked to B via tana = 2tan 8. « is measured along one of the base lines and § at one of
the base vertices.

Parameters:
¢ length of one side of the equilateral triangular base L,
* height H,

¢ angle «a is the angle between the base and the side faces, taken in the middle of the
base lines.

. e H tanca
Restrictions on the parameters: — < .
L 2y3
Properties:
3
tan(a)L3 2v3H
. VolumeVzL 1- 1—L)
24 Ltan(a)

3
e particle surface seen from above S = %Lz.

Page 91 Tetrahedron

Expression of the form factor
V3H q.L
F(q,L H,@) = ———ex (z—) 3
1 dx(q% —343) P an@v3
{qu exp(iqs D) sinc(qs H) — (qx + v3q,) exp(iqi D) sinc(q1 D) - (qx — V3qy) exp(—ig D) sinc(ng)},

with sinc(x) = sin(x)/ x,

dxV3+qy
g = _—

tana

4y 4z D= Ltana

“tana 2’ V3

axV3-ay _1
tana o)

! "
2 qz|, 43

Syntax: FormFactorTetrahedron(length, height, alpha)
Example

Figure shows the normalized intensity |F 12/v?2, computed with L = 15 nm, H = 6 nm
and a = 60°.

q, [nm"

Figure C.6: Normalized intensity for the form factor of a Tetrahedron plotted against

(qy, qz) and (qx, qy) and computed with FormFactorTetrahedron(15.*nanometer,
6.*nanometer, 60.x*degree).

Appendix C. Form factors Page 92

C.4 Prism6

Real-space geometry
This shape is an hexagonal prism (see fig.[C.7).

<Y

<Y

(a) Side view (b) Top view

Figure C.7: Sketch of a Prism®.

Parameters:

¢ radius of the hexagonal base R,

* height H.
Properties:
3v3
e volume V = T\/_HRZ,
3V3R?
e particle surface seen from above S = \/2_ .
Expression of the form factor
4HV3 H . H
F(q,R,H) = ———sinc|q;— |exp|—iqz— | X
3qy—4qx 2 2

3g°R? R v3qyR 3R R
{ qul sinc(qz)sinc(Zy)+cos(qu)—cos(qy\/_T)cos(qZ)},

with sinc(x) = sin(x)/x.

Syntax: FormFactorPrism6(radius, height)

Page 93 Prism6

Example
Figureshows the normalized intensity | F 12/V2, computed with R=5nmand H =11 nm.

Figure C.8: Normalized intensity for the form factor of a Prism6 plotted against (qy, q.) and
(qx, qy) and computed with FormFactorPrismé(5.*nanometer, 11.*nanometer).

Appendix C. Form factors Page 94

C.5 Cone6

Real-space geometry
It is a truncated hexagonal pyramid (see fig.[C.9).

AY
Az
X
H
p
X R
(a) Side view (b) Top view

Figure C.9: Sketch of a Cone6. The implementation of this shape uses angle a, which is

2
linked to B viatana = ﬁ tan B. a is measured along one of the base lines and f at one of

the base vertices.

Parameters:
¢ radius of the regular hexagonal base R,
* height H,

* angle a is considered between one of the side faces and the middle of a base length.

. L. 2H
Restrictions on the parameters: —— <tana.

V3R
Properties:
3 3 2H \®
e volume V=-tan(a)R° |1 -(1—- ——| |,
4 tan(a)RV3
3v/3R?

e particle surface seen from above S = 7

Page 95

Expression of the form factor

The calculation can be derived from “Prism6” (Section by considering a side length

varying with the vertical position:

43 H 3 . R\ . [V3qyR
F(q,R,H,a) = ?WJJZ,——%ZC‘/(; exp(lCIzz)[Zqu}z,SlnC(qxz Z)Slnc(%

V3q,R R
+cos(gxR;) — cos (ﬂ cos (M)] dz

2 2

2
with R, =R- __c and sinc(x) = sin(x)/x.
v3tan(a)

Syntax: FormFactorCone6(radius,height, alpha)

Example

Figure shows the normalized intensity |F|?/ V2, computed with R = 10 nm, H = 13 nm,

and a = 60°.

Figure C.10: Normalized intensity for the form factor of a Cone6 plotted against (g, g)
and (qx, qy) and computed with FormFactorCone6(10.*nanometer,13.*nanometer,

60.*degree).

Appendix C. Form factors Page 96

C.6 Pyramid

Real-space geometry
This shape is a truncated pyramid with a square base as shown in fig.

y
AZ
L X
H
o
5 L
(a) Side view (b) Top view
Figure C.11: Sketch of a Pyramid
Parameters:

¢ length of one side of the square base L,
¢ height H,

¢ a is the angle between the base and the side faces, taken in the middle of the base
lines.

2H
Restrictions on the parameters: T < tan(a).

Properties:

[~ aarr) |
1-11- ,
tan(a)L

* particle surface seen from above S = 2.

1
e volume V = g tan(a)L?

Expression of the form factor

X

F(q,L,H,a) =
qxqy

{Kl cos + K> sin —Kj3cos — Ky sin

L

L
(Qx"'%/)g

L
(Qx"'qy)a

L
(Qx_%/)z

L
(Qx_%/)z

Page 97

Pyramid

with sinc(x) = sin(x)/x,

zl Clx—CIy+] =l dx—dqy]
Nn=3 tan(a) <V =35 tan(a) °

_lr4qx+aqy _1lr4qx+ay
=3 tan(a) +61z], W=7 tan(a) Z]

Kj =sinc(q; H) exp(iq1 H) + sinc(g2 H) exp(—ig2 H)
K> = —isinc(q) H) exp(ig1 H) + isinc(qe H) exp(—iqg2 H)
K3 =sinc(gz H) exp(iqs H) + sinc(qgs H) exp(—iqgs H)
Ky = —isinc(gs H) exp(igz H) + i sinc(gqs H) exp(—iqgs H)

Syntax: FormFactorPyramid(length, height, alpha)

Examples Figure shows the normalized intensity |F|?/ V2, computed with L = 18 nm,

H =13 nm and a = 60°.

Figure C.12: Normalized intensity for the form factor of a pyramid plotted against
(@y, qz) and (qgx, qy) and computed with FormFactorPyramid(18.*nanometer,

13.*nanometer, 60.xdegree).

Appendix C. Form factors Page 98

C.7 Anisotropic pyramid

Real-space geometry
This shape is a truncated right pyramid with a rectangular base as shown in fig.

=Y

. e

(a) Side view (b) Top view

<Y

Figure C.13: Sketch of an Anisotropic Pyramid.

Parameters:
e full length of the base L,
o full width of the base W,
¢ height H,
¢ «a is the angle between the base and the side faces, taken in the middle of the base
lines.

.. 2H 2H
Restrictions on the parameters: T <tan(a) and W < tan(a).

Properties:

(L+W)H 4 H?

e volume V=H|LW — + - ,
tan(a) 3 tan?(a)

e particle surface seen from above S = LW.

Expression of the form factor

X

F(q,L,LW,H,a) =
qxqy

o) sl -0)k)l o0)

Page 99 Anisotropic pyramid

with sinc(x) = sin(x)/x,

Kj =exp(—iqg. H) sinc(g2 H) + exp(iq1 H) sinc(q; H)
K> =iexp(—iqoH)sinc(qe H) —iexp(iq; H) sinc(qy H)
K3 = exp(—iqsH)sinc(qs H) + exp(ig3 H) sinc(q3 H)
Ky =iexp(iqsH)sinc(qsH) — i exp(iqs H) sinc(qs H)

:l qx_CIy_'_ :1 q=—4y]
D=5 Tana) 73| ana ‘
1 qx+qy+] _lldxtay]
B=5 | T@ana " T3 | @na ‘

Syntax: FormFactorAnisoPyramid(length, width, height, alpha)

Example

Figure shows the normalized intensity | F|>/ V2, computed with L = 20 nm, W = 16 nm,
H=13nm, and a =60°.

Figure C.14: Normalized intensity for the form factor of an anisotropic pyra-

mid |F]?/V? plotted against (qy, ¢;) and (qx, ¢,) and computed with
FormFactorAnisoPyramid(20.*nanometer, 16.*nanometer, 60.*degree).

Appendix C. Form factors Page 100

C.8 Cuboctahedron

Real-space geometry

Itis a combination of two pyramids with square bases, as shown in fig.[C.15} the bottom one
is upside down with an height H and the top one has the opposite orientation (the standard
one) and an height ry x H.

\Z Y
ryH
L X
H
X L
(a) Side view (b) Top view
Figure C.15: Sketch of a Cuboctahedron.
Parameters:

¢ length of the shared square base L,
* height H,
¢ height_ratio ry,

¢ a is the angle between the base and the side faces, taken in the middle of the base
lines (see fig. in Section|C.6).

ZT’HH

2H
Restrictions on the parameters: A <tan(a) and < tan(a).

Properties:
2H)3_(1 2rpH)3]’

1
e volume V = —tan(a)L3[2—(1—— -
6 Ltan(a) Ltan(a)

* particle surface seen from above S = L%,

Expression of the form factor

F(qur H) rHJ a) =exp(quH) prramid(q_x; CIy; CIzyL; rHH;a’)+FPyramid(qx,CIy;_6]z;L; Hra))

Page 101 Cuboctahedron

Syntax: FormFactorCuboctahedron(length, height, height_ratio, alpha)

Example

Figure shows the normalized intensity |F|?/V?, computed with L = 20 nm, H = 13 nm,
rg =0.7, and a = 60°.

IFIV[E

[y
<
o

0 -1
a, [nm’]

Figure C.16: Normalized intensity for the form factor of a cuboctahedron plotted against

(gy, qz) and (qx, qy) and computed with FormFactorCuboctahedron(20.*nanometer,
13.*nanometer, 0.7, 60.*degree).

Appendix C. Form factors Page 102

C.9 C(Cylinder

Real-space geometry
This shape is a right circular cylinder (see fig.[C.17).

2R

A

<Y

(a) Side view (b) Top view

Figure C.17: Sketch of a Cylinder.

Parameters:
¢ radius of the circular base R,

* height H.

Properties:
e volume V = 7R*H,

* particle surface seen from above S = 7R?.
Expression of the form factor

’

H H R
F(q,R, H) = 2nR?Hsinc (qzz) exp (iqz—) ha®

2] qR

with g = /g% + q% and J (x) is the first order Bessel function of the first kind [2].

Syntax: FormFactorCylinder(radius, height)

Page 103 Cylinder

Example
Figure shows the normalized intensity | F|?/ V2, computed with R = 8 nm and H = 16 nm.

Figure C.18: Normalized intensity for the form factor of a cylinder plotted against (g,
qz) and (gx, qy.) It has been computed with FormFactorCylinder(8.*nanometer,
16.*nanometer).

Appendix C. Form factors Page 104

C.10 Ellipsoidal cylinder

Real-space geometry
This is a cylinder whose cross section is an ellipse.

2ry -

x

<Y

2r,

(a) Side view (b) Top view

Figure C.19: Sketch of an Ellipsoidal Cylinder.

Parameters:
* r, = halflength of the ellipse main axis parallel to x,
* rp = halflength of the ellipse main axis parallel to y,

* height H.

Properties:
e volume V =nr,rpH,

¢ particle surface seen from above S = r,1y,.

Expression of the form factor The total form factor is given by

qu) Ji(y)
2 Y

’

.q-HY .
F(q,R,W,H) =2nr,rp,Hexp IT sinc

withy = \/ (gx7a)? + (qy1p)? and J; (x) is the first order Bessel function of the first kind [2].

Syntax: FormFactorEllipsoidalCylinder(r,, r,, height)

Page 105 Ellipsoidal cylinder

Example

Figure shows the normalized intensity |F|>/V?, computed with r, = 13 nm, r;, = 8 nm,
and H =16 nm.

IFIV?

[y
o
&

Figure C.20: Normalized intensity for the form factor of an ellip-
soidal cylinder plotted against (qy, ¢;) and (qx, ¢y) and computed
with

FormFactorEllipsoidalCylinder(8.*nanometer, 13.*nanometer,
16*nanometer).

Appendix C. Form factors Page 106

C.11 Cone

Real-space geometry This shape is a truncated cone as shown in fig.

\ Y
X
H
o
X 2R
(a) Side view (b) Top view
Figure C.21: Sketch of a Cone.
Parameters:
e radius R,
e height H,

¢ « is the angle between the side and the circular base.

H
Restrictions on the parameters: 7 < tan(a).

Properties:

e volume V=—-tan(e)R° [1-|1——| |,
3 tan(a)R

* particle surface seen from above S = 7R?.

Expression of the form factor

H R
F(q,R H,a) = f 271R§% exp(iq.2)dz,
0 |

| Lz

with R, = R —
kind [?].

_ |2, 2 . .
P q) =1/9x+ 4y and J;(x) is the first order Bessel function of the first

Page 107 Cone

Syntax: FormFactorCone(radius, height, alpha).

Example

Figure shows the normalized intensity |F|?/ V2, computed with R = 10 nm, H = 13 nm,
and a@ = 60°.

IFIVE ©
2

Figure C.22: Normalized intensity for the form factor of a Cone plotted against (qy, q.) and

(gx, gy.) It has been computed with FormFactorCone (10.*nanometer, 13.*nanometer,
60.*degree).

Appendix C. Form factors Page 108

C.12 Full Sphere

Real-space geometry
The full sphere is parametrized by its radius R.

WA AY

2R 2R

xY

x\

(a) Side view (b) Top view

Figure C.23: Sketch of a Full Sphere.

Parameters: radius R.

Properties:

i o
e volume V = ?R ,
* particle surface seen from above S = 7R?.

Expression of the form factor

sin(qR) — qRcos(qR)

F(q,R) =4nR3 iq.R
(q,R) =4nR"exp(igzR) (GR?

where g = /g5 + G5+ 5.

Syntax: FormFactorFullSphere(radius)

’

Page 109 Full Sphere

Example
Figureshows the normalized intensity | F|?>/V?, computed with R = 8 nm.

Figure C.24: Normalized intensity for the form factor of a Full Sphere plotted against (qy,
qz) and (qy, qy) and computed with FormFactorFullSphere (8. *nanometer).

Appendix C. Form factors Page 110

C.13 Truncated Sphere

Real-space geometry
This shape is a spherical dome, i.e. a portion of a sphere cut off by a plane (perpendicular
to z-axis) as shown in fig.

AY
\Z
2R >
X
H
z
(a) Side view (b) Top view
Figure C.25: Sketch of a Truncated Sphere.
Parameters:
e radius R,
¢ height H.
Restrictions on the parameters: 0< H <2R.
Properties:
;[2 H-R 1(H-R\
e volume V=nR> |-+ -=)
3 R 3V R
) TR?, H=R
¢ particle surface seen from above S = .
n(2RH-H?), H<R
Expression of the form factor
R R
F(q,R, H) :Znexp[iqz(H—R)]f ngexp(iqzz)dz,
R-H | iz

with /i (x) the first order Bessel function of the first kind [2], q| = / 61325 + qu,, and R, =

RZ_ZZ

Page 111 Truncated Sphere
Syntax: FormFactorTruncatedSphere(radius, height)
Example
Figure shows the normalized intensity |F|?/V?, computed with R = 5 nm and H =
7 nm:

IFIVI?

=
o
3,

Figure C.26: Normalized intensity for the form factor of a Truncated Sphere plotted against

(qy, qz) and (gx, qy) and computed with FormFactorTruncatedSphere (5. *nanometer,
7.*nanometer).

Appendix C. Form factors Page 112

C.14 Full Spheroid

Real-space geometry
A full spheroid is generated by rotating an ellipse around the vertical axis (see fig.[C.27).

Az

H
2R >
X
X
(a) Side view (b) Top view
Figure C.27: Sketch of a Full Spheroid.
Parameters:
e radius R,
* height H.
Properties:

2 0
e volume V = §R H,
* particle surface seen from above S = 7R?.

Expression of the form factor

Hi2 R J1(q R2)

cos(q;z)dz,
q) Rz ’

F(q,R,H) = 47rexp(iqu/2)f
0

with J; (x) the first order Bessel function of the firstkind (2], R, = Ry/1— %2, Yz= \/(CIsz)Z +(gqyR2)%

Syntax: FormFactorFullSpheroid(radius,height)

Page 113 Full Spheroid

Example
Figure shows the normalized intensity |F|?/V?, computed with R = 10 nm, and H =
13 nm.

Figure C.28: Normalized intensity for the form factor of a full spheroid plotted against
(qy, qz) and (gx, qy) and computed with FormFactorFullSpheroid(10.*nanometer,
13.*nanometer).

Appendix C. Form factors Page 114

C.15 Truncated Spheroid

Real-space geometry
This shape is a spheroidal dome: a portion of a full spheroid cut off by a plane perpendicular

to the z-axis.
AZ
AY
f,R
H
2R >
X
X
2R
(a) Side view (b) Top view
Figure C.29: Sketch of a Truncated Spheroid.
Parameters:
e radius R,
¢ height H,

* height_flattening coefficient in the perpendicular direction f,.

H
Restrictions on the parameters: 0 < 2 <2fp.

Properties:

TRH? H
e volume V = (1—),
Ip 3fpR
nR?, H= f,R

2RH H?
~—_—_—|, H<R

o 1

* particle surface seen from above S =
i1

Page 115 Truncated Spheroid

Expression of the form factor

2 J1(q)Rz)

fR
F(q,R,H, =2nexpliqg,(H- f,R R exp(ig,z)dz
@ R, fy) =2nespliaz(- o) [p2% S expria)

with /i (x) the first order Bessel function of the firstkind 2], ¢ = /g3 + g5 and R, = \/R? - 2%/ f;.
Syntax: FormFactorTruncatedSpheroid(radius, height, height_flattening)
Example

Figure shows the normalized intensity |F 12/v?, computed with R =7.5 nm, H =9 nm
and f, =1.2.

Figure C.30: Normalized intensity for the form factor of a Truncated
Spheroid plotted against (gq;, ¢y) and (qx, ¢y) and computed with
FormFactorTruncatedSpheroid(7.5%nanometer, 9.*nanometer, 1.2).

Appendix C. Form factors Page 116

C.16 Hemi ellipsoid

Real-space geometry
This shape is a truncated ellipsoid as shown in fig.

Ay
2ry -
\Z X
H _\
X 2r,
(a) Side view (b) Top view

Figure C.31: Sketch of an Hemi-ellipsoid.

Parameters:

* r, = halflength of the ellipse main axis parallel to x,

* rp = halflength of the ellipse main axis parallel to y,

e H =height (half length of the vertical main axis of a full ellipsoid).
Properties:

e volume V = gnrarbH,

* particle surface seen from above S = nr,7y.

Expression of the form factor

]1 (Yz)

¥4

H
F(q,74, 1y, H) =2nf Ta,zTb,z exp(iq;z)dz,
0

2 2
with J; (x) the first order Bessel function of the firstkind [?], 7, , = 741/ 1 — (%) JIhz=Tp\/1— (%)

andy, = \/(era,z)z + (erb,z)z-

Syntax: FormFactorHemiEllipsoid(r,, r,, height)

Page 117 Hemi ellipsoid

Example
Figure shows the normalized intensity |F|?/V?, computed with r, = 10 nm, r, = 6 nm
and H =8 nm.

Figure C.32: Normalized intensity for the form factor of an Hemi-Ellipsoid plotted against
(qy, qz) and (qx, qy) computed with FormFactorHemiEllipsoid(10.*nanometer,
6.*nanometer, 8.*nanometer).

Appendix C. Form factors

Page 118

C.17 Ripplel

Real-space geometry
This shape has a sinusoidal profile (see fig.[C.33).

\Z

<Y

[W |

(a) Side view

W

(b) Top view

Figure C.33: Sketch of a Ripplel.

Parameters:
e length I,
e width W,
* height H.

Properties:

LWH
e volume V = —

e particle surface seen from above S = LW.

Expression of the form factor

w . qxL
F(q,L,W,H)=L-— -sinc > X
/4

H 2z
f dzarccos(— —l)sinc q
0 H

%Y
arccos|——1
T H

exp (iqzz)’

Y <

Page 119 Ripplel

where arccos is the arc cosine (i.e. the inverse operation of cosine).
Syntax: FormFactorRipplel(length, width, height)
Example

Figure shows the normalized intensity |F|>/V?, computed with L = 27 nm, W = 20 nm
and H = 14 nm.

Figure C.34: Normalized intensity for the form factor of a ripplel |F|?/V?2, plotted
against (qy, q;) and (qx, q,) computed with FormFactorRipplel(27.*nanometer,
20.*nanometer, 14.*nanometer).

Appendix C. Form factors Page 120
C.18 Ripple2
Real-space geometry
This shape has an asymmetric sawtooth profile.
AX
LAZ
d L y
H
< S Ty
W/2 W
(a) Side view (b) Top view
Figure C.35: Sketch of a Ripple2.
Parameters:
e length L,
e width W,
e height H,

e asymmetry d.
Restriction on the parameters: |d| < %

Properties:

LWH
e volume V = —

e particle surface seen from above S = LW.

Page 121 Ripple2

Expression of the form factor

L
F(q,L,W,H,d) = LWsinc(%) x

fOH(l— %)sinc

Syntax: FormFactorRipple2(length, width, height, asymmetry)

w
Qyz (l—i)

exp{i[q.z— qya(1- %)]}dz

Examples Figure[C.36/shows the normalized intensity | F|>/ V2, computed with L = 36 nm,
W =25nm, H =14 nm, and d =3 nm.

Figure C.36: Normalized intensity for the form factor of a ripple2 plotted against (gy,
qz) and (qx, qy) computed with FormFactorRipple2(36.*nanometer, 25.*nanometer,
14 .*nanometer, 3.*nanometer).

	Introduction
	Quick start
	Quick start on Unix Platforms
	Quick start on Windows Platforms
	Getting help

	Installation
	Building and installing on Unix Platforms
	Installing on Windows Platforms

	Simulation
	General methodology
	Geometry of the sample
	Example 1: two types of islands on top of substrate without interference
	Example 2: working with sample parameters

	Graphical User Interface
	Scattering cross–section
	Position of the problem
	Collection of particles
	Particles - Form factors
	More complicated particles' shapes
	Material layers
	Polarisation

	Fitting
	Implementation in BornAgain
	Basic Python fitting example
	Advanced fitting
	How to get the right answer from fitting

	Software architecture
	Listings
	Python simulation example
	Python fitting example

	Theory
	Scattering on nanoparticles - Formal treatment
	Small angle approximation
	Born approximation
	Distorted Wave Born Approximation

	Form factors
	Box
	Prism3
	Tetrahedron
	Prism6
	Cone6
	Pyramid
	Anisotropic pyramid
	Cuboctahedron
	Cylinder
	Ellipsoidal cylinder
	Cone
	Full Sphere
	Truncated Sphere
	Full Spheroid
	Truncated Spheroid
	Hemi ellipsoid
	Ripple1
	Ripple2

