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1 Wave propagation and scattering

This chapter introduces the formalism to described neutron and X-ray propagation
and scattering, as needed for the analysis of grazing-incidence small-angle scattering
(GISAS) experiments.

1.1 Wave propagation

In this section, we review the wave equations that describe the propagation of neutrons
(Sec. 1.1.1) and X-rays (Sec. 1.1.2) in matter, and combine them into a unified wave
equation (Sec. 1.1.3) that is the base for the all following analysis. This provides
justification and background for Eqns. 1-3 in the BornAgain reference paper [1].

1.1.1 Neutrons

The scalar wavefunction 1 (r,t) of a free neutron in absence of a magnetic field is
governed by the Schrédinger equation

2
ihdph(r, t) = {_;nw + V(r)} Y(r,t). (1.1)

Since BornAgain only aims at modelling elastic scattering, any time dependence of the
potential is averaged out in the definition V(r) := (V(r,t)). Inelastic scattering, in
principle, can be accounted for by an extra contribution damping.! Therefore we only
need to consider monochromatic waves with given frequency w. In consequence, the
wavefunction

W(r,t) = P(r)e”™" (1.2)

factorizes into a stationary wave and a time-dependent phase factor. In the following,
we will characterize the incoming radiation not by its energy hw, but by its vacuum
wavenumber K, given by the dispersion relation

hew = (h;;)? (1.3)

The Schrodinger equation (1.1) then takes the simple form

{V?+ K? — dmvpua(r) b b(r) = 0 (1.4)

!This is not explicitly supported in the software, but users are free to increase the imaginary part
of the refractive index to emulate damping by inelastic losses.
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with the rescaled form of Fermi’s pseudopotential
m

Dt (1) = V() = 37 (b8 (1 = 1(1)) (15)

J

The sum runs over all nuclei exposed to 1. The subscript “nucl” designates nuclear
as opposed to magnetic scattering. The bound scattering length b; is isotope specific;
values are tabulated [2].

In small-angle scattering, as elsewhere in neutron optics [3], the potential can be
coarse-grained by spatially averaging over at least a few atomic diameters,

Unucl(r) = Z bsps(r)a (16)

where the sum now runs over chemical elements, by = (b;);jes is the bound coherent
scattering length, and ps is a number density. In passing from (1.5) to (1.6), we ne-
glected Bragg scattering from atomic-scale correlation, and incoherent scattering from
spin or isotope related fluctuations of b;. In small-angle experiments, these types of
scattering only matter as loss channels.? Furthermore, incoherent scattering, as inelas-
tic scattering, contributes to the diffuse background in the detector. In conclusion, the
coarse-grained neutron optical potential (1.6) is just a scattering length density (SLD)
[3, eq. 2.8.37].

In general, the incident neutron beam in a scattering experiment is not a pure
quantum state, but a statistical mixture of such states, and must therefore be described
by a density matrix,

pi=Y_pjlvy) (W5, (1.7)
i

~

where p; is the probability of pure state ¢;. Let us define the wave vector operator k
and the flux operator

J =) (r|k + k' |r) (r]. (1.8)

The current density, or flux, is then given by
a LV \Y% N
30) = (4} o Xy {0500 5,05 0) = o5 0500 (19)
J

This is in arbitrary units, since we do not impose a specific normalization on the
unbound wavefunction . To compute scattering cross sections, we will only need the
ratio of scattered to incident flux. Mostly we will assume pure states to be plane waves

Ui (r) = kT, (1.10)

In vacuum, the wavevector k purely real. We replace the sum in (1.7) by an integral,
and find that the flux is simply

J(r) = /d3k Pk Y1)’k (1.11)

2Same remark as in Footnote 1: To model these losses, use the imaginary part of the refractive
index.
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1.1.2 X-rays

The propagation of X-rays is governed by Maxwell’s equations,

VxE=-0B, VB=0, B=_pu(r)uH,
(1.12)
VxH=4+8D, VD=0, D =er)eE.

Since BornAgain only addresses elastic scattering, we assume the permeability and
permittivity tensors p and € to be time-independent. Therefore, as in Sec. 1.1.1, we
only need to consider monochromatic waves with given frequency w, and each of the
fields E, D, H, B factorizes into a stationary field and a time-dependent phase factor.?
We will formulate the following in terms of the electric field

E(r,t) = E(r)e ™", (1.13)

The other three fields can be obtained from E by straightforward application of (1.12).

Since magnetic refraction or scattering is beyong the scope of BornAgain, the
relative magnetic permeability tensor is always u(r) = 1. As customary in SAXS
and GISAXS, we assume that the dielectric properties of the material are those of
a polarizable electron cloud. Thereby the relative dielectric permittivity tensor e
becomes a scalar,

drr,

e(r)y=1- 72

(), (1.14)

with the classical electron radius r. = e2/mc? ~ 2.8 - 1071 m, the electron number
density p(r), and the vacuum wavenumber K, given by the dispersion relation

K? = ppeqw?. (1.15)

With these simplifying assumptions about € and p, Maxwell’s equations yield the wave
equation

V x V x E = K?¢(r)E. (1.16)

Using a standard identity from vector analysis, it can be brought into the more
tractable form

{V? -V -V+K%r)}E()=0. (1.17)

It is well known that the electromagnetic energy flux is given by the Poynting
vector. However, its standard definition, S := E x H, is not applicable here because it
only holds for real fields. With our complex notation, it must be replaced by

S :=ReE(r,t) x ReH(r,1). (1.18)

3This phase factor can be defined with a plus or a minus sign in the exponent. Most texts on X-ray
crystallography, including influential texts on GISAXS [4], prefer the crystallographic convention with
a plus sign. In BornAgain, we prefer the opposite quantum-mechanical convention for consistency with
the neutron case (1.2), where the minus sign is an inevitable consequence of the standard form of the
Schrédinger equation.

4This is occasionally called the Laue model [5].
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For stationary oscillations (1.13), the time average is

(S) = = (E(r) x H(r)" +c. c.). (1.19)

>~ =

We specialize to vacuum with ¢(r) = 1, and obtain

1
- ddwpg

(S) (E*(r) x (VxE(r)) +c.c.). (1.20)

For a plane wave E(r) = Exe’® ™, we find

1
(S) = myEk|2Rek, (1.21)

which confirms the common knowledge that the radiation intensity counted in a de-
tector is proportional to the squared electric field amplitude.

1.1.3 Unified wave equation
As in Eqns. 1-3 of Ref. [1], we combine all the above in a unified wave equation
(Do — 4mv(r))¢(r) =0 (1.22)

with the vacuum wave operator

V2 + K? for neutrons,
Dy = (1.23)
V2 -V.-V+ K? for X-rays
and the potential®
nuc f t 5
v(r) = Unuci(r) oF Heutrons (1.24)
K2(1 —€(r))/(47) for X-rays.

The generic wave amplitude v shall represent the scalar neutron wavefunction v or
the electric field E.

"This corrects Eq. 3 in our reference paper [1], which had a sign error in the X-ray case.
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1.2 Distorted-wave Born approximation

Neutron or X-ray scattering by condensed matter is usually described in Born ap-
proximation (BA), which is treats the whole potential v(r) as a small perturbation.
This is not adequate if incident or scattered wave propagate under small grazing an-
gles, as refraction and reflection are no longer small. For grazing-incidence small-angle
scattering, we need the more generic distorted-wave Born approximation (DWBA).6

1.2.1 Distortion versus perturbation

To get started, we decompose the potential (1.24) into a more regular and a more
fluctuating part:

v(r) = o(r) + dv(r). (1.25)

The distortion field ¥ comprises regular, well-known features of the sample. The per-
turbation potential dv stands for the more irregular, unknown features of the sample
one ultimately wants to study in a scattering experiment. The wave equation (1.22)
shall henceforth be written as

(D(r) — 4mév(r)) (r) =0 (1.26)
with the distorted wave operator
D(r) :== Dy — 47o(r). (1.27)

Only v shall be treated as a perturbation. The propagation of incident and scattered
waves under the influence of T, in contrast, shall be handled exactly, through analytical
solution of the unperturbed distorted wave equation

D(r)i(r) = 0. (1.28)

The solutions are called distorted because they differ from the plane waves obtained
in the vacuum case v = 0.

Except for neutrons in a magnetic field the distortion field is scalar so that it can
be expressed through the refractive index

4ro(r) \/1 — 47Uy (r) /K2  for neutrons,
K €(r)

n(r) =4/1 (1.29)

for X-rays.

5The DWBA was originally devised by Massey and Mott (ca 1933) for collisions of charged particles.
Summaries can be found in some quantum mechanics textbooks (Messiah, Schiff) and in monographs
on scattering theory (e. g. Newton). The first explicit applications to grazing-incidence scattering were
published in 1982: Vineyard [6] discussed X-ray scattering, but failed to account for the distortion of
the scattered wave; Mazur and Mills [7] deployed heavy formalism to compute the inelastic neutron
scattering cross section of ferromagnetic surface spin waves from scratch. A concise derivation of the
DWBA cross section was provided by Dietrich and Wagner (1984/85) for X-rays [8] and neutrons [9].
Unfortunately, their work was overlooked in much of the later literature, which often fell back to less
convincing derivations.
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If 7(r) or ¢(r) has an imaginary part, describing absorption, then n(r) is a complex
number. Conventionally, n is parameterized by two real numbers:

n=1-—4§+1p. (1.30)

For thermal neutrons and X-rays, § and 3 are almost always nonnegative,” and much
smaller than 1. This explains why in most scattering geometries the ordinary Born
approximation with 7 = 0 is perfectly adequate. In layered samples under grazing
incidence, however, even small differences in n can cause substantial refraction and
reflection. To model GISAS, therefore, it is necessary to use DWBA with ©(z) given
by the horizontally averaged refractive index 7(2).

1.2.2 Differential cross section

The ratio of the scattered flux J(r) hitting an infinitesimal detector area r2df) to the
incident flux J; is expressed as a differential cross section
do  r%J(r)

e Uk (1.31)

The geometric factors that are needed to convert do/dS) into detector counts will be
discussed below in Sec. 6.2.
From standard textbooks we take the generic differential cross section of elastic

scattering in first order Born approximation,®
do
1o = | (Wil Svlee) |, (1.32)

where the matrix element in Dirac bra-ket notation stands for the integral

(slSoldr) = / 07 47 ()50 (e)(r). (1.33)

For brevity and mathematical convenience, the integral has no bounds and therefore
formally runs over the entire space. However, dv(r) is nonzero only if r lies inside the
finite sample volume.

In ordinary (non-distorted) Born approximation, the incident v; is a plane wave
(1.10). By means of a far-field expansion, the outgoing spherical wave v, traced
back from the detector towards the sample, is also approximated as a plane wave.
Thereby (1.33) becomes a Fourier integral

(Wi|dv|ie) = /d3r e T 5y (r)e’kr = /dgr e Su(r) (1.34)
with the scattering vector

q = kf - ki. (135)

"The plus sign in front of i# is a consequence of the quantum-mechanical sign convention; in the
X-ray crystallography convention it would be a minus sign.
8For a particularly detailed derivation see Schober’s lecture notes on neutron scattering [10].
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(a) (b)

Figure 1.1: (a) In a multilayer sample, the scattered wave propagates from the scattering
center S towards the detector D through different paths, due to partial reflection by interfaces.
(b) In far-field approximation, the detector location is so remote that all rays leaving the sample
can be considered parallel. In consequence, when the scattered wave is traced back from the
detector it can be considered plane until it reaches the sample.

Z

This plane-wave approximation breaks down under grazing incidence as refrac-
tion and reflection by surfaces and interfaces cannot be neglected. While (1.32) and
(1.33) still hold, (1.34) does not. In DWBA, the incident wave v; ceases to be plane
when it reaches the sample (Fig. 1.1). Inside the sample it evolves according to the
unperturbed wave equation (1.28). Similarly, the scattered wave ¢, traced back from
the detector, is a plane wave outside the sample, but is distorted inside the sample
as it obeys (1.28). The wave propagation inside a discrete multilayer sample will be
worked out in Chapter 2.
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2 Flat multilayer systems

This chapter specializes the DWBA for a multilayer system with (r) = v(z).

2.1 Wave propagation and scattering in layered samples

2.1.1 Wave propagation in 2+1 dimensions

We now specialize the results from Chapter 1 to wave propagation in a sample that is,
on average, translationally invariant in 2 dimensions. Following standard convention,
we choose the surface of the sample in the xy plane, and its normal along z. In
visualizations, we will always represent the xy plane as horizontal, and the z axis
as upward vertical, altough there are “horizontal” reflectometers where the sample is
upright to allow for a horizontal scattering plane.

Scattering from such systems will be studied in distorted-wave Born approxima-
tion. To determine the neutron scattering cross section (1.32), we need to determine
the incident and final wavefunctions v; and ;. Vertical variations of the refractive
index n(z) cause refraction and reflection. For waves propagating at small glancing
angles, the reflectance can take any value between 0 and 1, even though 1 — n is only
of the order 10~ or smaller. Such zeroth-order effects cannot be accounted for by
perturbative scattering theory. Instead, we need to deal with refraction and reflection
from the onset, in the wave propagation equation. Accordingly, the SLD decomposi-
tion (1.25) takes the form

v(r) =v(z) + ov(r), (2.1)
and the unperturbed distorted wave equation (1.28) becomes
{V? +k(2)?} 9(r) = 0. (2.2)

Below and above the sample, k(z) = const: in these regions, 1 (r) is a superposition of
plane waves. The exciting wavefunction is

Ye(r) = ekiriFikiez, (2.3)

The subscripts || and L refer to the sample xy plane. The wavevector components kj
and k| must fulfill

k(2)? =i+ k7. (2.4)
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Continuity across the sample implies

k| = const. (2.5)
From here on, we abbreviate

ki=Fkj. (2.6)

When the incident wave hits the sample, it is wholly or partly reflected. Therefore,
the full the solution of (2.2) in the half space of the radiation source is

Y(r) = ekiritirez | oikyr)—irez (2.7)

with a complex reflection coefficient R. The reflected flux is given by the reflectance
|R|?. In the opposite halfspace, the solution of (2.2) is simply

w(r) — Tez’kHrH—i-mez (2.8)

with a complex transmission coefficient T'. The transmitted flux is given by the trans-
mittance |T|?. As before, subscript e stands for the exciting wave in vacuum outside
the sample.

Within the sample, the wave equation (2.2) is solved by the factorization ansatz

Y(r) = eXITlg(z2). (2.9)

The vertical wavefunction ¢(z) is governed by the one-dimensional wave equation

{83 +k(2)? - kﬁ} é(2) = 0. (2.10)

As solution of a differential equation of second degree, ¢(z) can be written as super-
position of a downward travelling wave ¢~ (z) and an upward travelling wave ¢™(z).
Accordingly, the three-dimensional wavefunction can be written as

P(r) =y~ (x) + ¢ (r). (2.11)

2.1.2 The four DWBA terms

All the above holds not only for the incident wavefunction ;, but also for the wave-
function ¢ that is tracked back from a detector pixel towards the sample. Therefore
the scattering matrix element involves two incident and two final partial wavefunctions.
The resulting sum

(Wil6vlve) = (W [0vlvy ) + (@ [6v]et) + (iF dvlvr) + (W |6v|yy) (2.12)

is depicted in Figure 2.1. It can be written in an obvious shorthand notation

(Wilovfer) =D (W |dvlyf) . (2.13)

+i Ey
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Figure 2.1: The four terms in the DWBA scattering matrix element (2.13). Note that this is a
highly simplified visualization. In particular, it does not show multiple reflections of incoming
or scattered radiation, though they are properly accounted for by DWBA theory and by all
simulation software.

This equation contains the essence of the DWBA for GISAS, and is the base for all
scattering models implemented in BornAgain. Since (i;|0v|t)r) appears as a squared
modulus in the differential cross section (1.32), the four terms of (2.13) can interfere
with each other, which adds to the complexity of GISAS patterns.

BornAgain supports multilayer samples with refractive index discontinuities at
layer interfaces. Conventions for layer numbers and interface coordinates are intro-
duced in Figure 2.2. A sample has N layers, including the semi-infinite bottom and
top layers. Numbering is from top to bottom, and from 0 to N — 1 as imposed by
the programming languages C++ and Python. Each layer [ has a constant refractive
index n; and a constant wavenumber k; = Ky,cn;. Any up- or downward travelling
solution of the wave equation shall be written as a sum over partial wavefunctions,

= W), (2.14)
l

with the requirement
Y (r) = 0 for r outside layer I. (2.15)

The DWBA matrix element (2.13) then takes the form

(i|ov]ep) = ZZZ (Wi |ovlvg) - (2.16)

+i %

2.1.3 DWBA for layers with constant mean SLD

We now specialize to the case that U(z) is a step function: within each layer, v(z) =: v;
is constant. Accordingly, within the layer, the directional neutron wavefunction @Dli
is a plane wave and factorizes as in (2.9). Its amplitude AfE is determined recursively
by Fresnel’s transmission and reflection coefficients that are based on continuity con-
ditions at the layer interfaces. This will be elaborated in Section 2.1.4. The vertical
wavenumber is determined by (2.3) and (2.5),

+
K =+, /k? — kﬁ (2.17)

In the absence of absorption and above the critical angle, wavevectors are real so that
we can describe the beam in terms of a glancing angle

o = arctan(ry/ky)). (2.18)
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Z0=7Z1
layer 1
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ZN-2
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Figure 2.2: Conventions for layer numbers and interface coordinates. A sample has N layers,
including the semi-infinite bottom and top layers. Layers are numbered from top to bottom.
The top vacuum (or air) layer (which extends to z — +o00) has number 0, the substrate
(extending to z — —o0) is layer N — 1. The parameter z; is the z coordinate of the top
interface of layer [, except for zg which is the coordinate of the bottom interface of the air or
vacuum layer 0.

Equivalently,

ky = Knjcosqy. (2.19)
Since k)| is constant across layers, we have

n; cos o = the same for all [, (2.20)

which is Snell’s refraction law.  In general, however, the vertical wavenumber x;,
determined by k; and k| as per (2.3), can become imaginary (total reflection conditions)
or complex (absorbing layer). In these cases, glancing angles are no longer well defined,
and the geometric interpretation of /;(r) less obvious. so that one has to fully rely on
the algebraic formalism.

With the indicator function

1 if <2< 24,
xi(r) = , (2.21)
0 otherwise,

the vertical wavefunction can be written
o (2) = Alieiml(z_zl)xl(z). (2.22)

The offset z; has been included in the phase factor for later convenience. See Sec. 5.1.1
for the case of vanishing k.
The DWBA transition matrix element (2.13) is

(hi|6v|epg) = ZZZAi*Aiav, (ki — k) (2.23)

+; ¢
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Figure 2.3: The transfer matrix M; connects the wavefunctions ®;, ®;_; in adjacent layers.

with the Fourier transform of the SLD restricted to layer [

/ dz /d2r|| 4T Sy(r) = /d3r T 5u(r)x (2).

To alleviate later calculations, we number the four DWBA terms from 1 to 4 as shown
in Fig. 2.1, and define the corresponding wavenumbers and amplitude factors and as

sui(q (2.24)

q' =k -k, Cl=A7A],

2 L 2. A% A—

q° =k -k, Ce=A"A,
f f (2.25)

=k -k’ C3=AA,

q' =k; — k', Ct = AAL

Accordingly, we can write (2.23) as

(1] 6v]g) = Z Z Clouy(qf') (2.26)

Since k| = const, all wavevectors q;' have the same horizontal component qy; they
differ only in their vertical component g}, .

2.1.4 'Wave amplitudes

The plane-wave amplitudes Ail need to be computed recursively from layer to layer.
Since these computations are identical for incident and final waves, we omit the sub-
script w in the remainder of this section. At layer interfaces, the optical potential
changes discontinuously. From elementary quantum mechanics we know that piecewise
solutions of the Schrodinger equations must be connected such that the wavefunction
¢(r) and its first derivative V(r) evolve continuously.

To deal with the coordinate offsets introduced in (2.22), we introduce the function

dl = Z] — Zl+1, (227)
which is the thickness of layer [, except for [ = 0, where the special definition of
2o (Fig. 2.2) implies dy = 0. We consider the interface between layers [ and | — 1,
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with [ =1,..., N — 1, as shown in Fig. 2.3. This interface has the vertical coordinate
z1 = 211 — dj_1. Accordingly, the continuity conditions at the interface are

ou(z) = di-1(z-1 — di1), (2.28)
0:01(z1) = O:01-1(21-1 — di—1).
We define the phase factor
o = et (2.29)

Here and in the following, we will write the downward travelling transmitted and of
the upward travelling reflected amplitude as

t:=A; and 1 = A} (2.30)
For the plane waves (2.22), the continuity conditions (2.28) take the form

o+ = -1t + 6, o1,
(2.31)
—Kity + Ky = —R-10-1t—1 + K10 T

After some lines of linear algebra, we can rewrite this equation system as

( b ) = M, ( g > (2.32)
ri-1 Ty

with the transfer matrix!
My = A1 5, (2.33)

which we write using the phase rotation matrix

510
A= (2.34)
0 g

and the refraction matrix

1 st s
Sp== "t ! (2.35)

9 - 4

S 5

with coefficients
sljE =1+ K /K_1. (2.36)

Energy conservation can be easily verified for real-valued wave numbers. The vertical
flux is J = |®|?x. Under the action of either A or S,

ri(|ti|* = |r1|?) = const for all [. (2.37)

IThis approach is generally attributed to Abelés, who elaborated it in his thesis from 1949, published
1950. The usually cited paper [11] is no more than a short advertisement.
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p polarization s polarization

Figure 2.4: Conventions for polarization directions relative to a refracting interface: For p
polarization, the electric field vector E is parallel to the interface normal n; for s polarization, it
is perpendicular (senkrecht in German). In either case, E is perpendicular to the wavevector k.

2.1.5 Modifications for X-rays

We shall now translate the above results from unpolarized neutrons to X-rays. The
vectorial amplitude of the electromagnetic field will require nontrivial modifications.
In place of the factorization (2.9), we write

E(r) = e®Ird(2). (2.38)
In place of (2.22), the vertical wavefunction is
B (2) = ARy (2). (2.39)

The vectorial character of Ail will require changes in Sec. 2.1.4. For electromag-
netic radiation in nonmagnetic media, the boundary conditions at an interface with
normal n are [12, eq. 7.37]

Z €E* n = const, (2.40)
+
Z E* x n = const, (2.41)
+
Z k" x E* = const. (2.42)
+

We will only consider the two polarization directions, conventionally designated as p
and s, defined in Figure 2.4. As some algebra on (2.40) to (2.42) would show, these are
principal axes, meaning that if both incoming fields E;”; and ElJr are strictly polarized
in either p or s direction, then the outgoing fields E;“_1 and E;” are polarized in the
same direction. Conversely, if the incoming fields are mixtures of p and s polarization,
then the outgoing fields will be, in general, mixed differently. Therefore if polarization
factors are quantitatively important in an experiment, one should strive to accurately
polarize the incident beam in p or s direction in order to avoid the extra complication
of variably mixed polarizations.
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Further algebra on (2.40) to (2.42) replicates the reflection law that relates k—
and k* and Snell’s law (2.20). Taking these for granted, we only retain equations that
are needed to determine the field amplitudes E*. For p polarization they yield

k k E-
= const, (2.43) {EbcE3}
—k/k Kk E*

and for s polarization

1 1 E-
( . ) ( o+ ) = const. (2.44)

The latter equation can be brought into the form (2.31). In consequence, s-polarized
X-rays are refracted and reflected in exactly the same ways as unpolarized neutrons.
For p polarization, ...(TODO)
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2.2 Solution of the split boundary problem

2.2.1 The split boundary problem

We now consider beam propagation through the entire multilayer sample, from the
semiinfinite top layer at [ = 0 to the semiinfinite substrate at [ = N — 1, which for
brevity shall be denoted by v := N — 1.

Let us assume that the radiation source or sink is located at z > 0. Then in the top
layer, to = 1 is given by the incident or back-traced final plane wave. In the substrate,
t, = 0 because there is no radiation coming from z — —oo. This leaves us with two
unkown amplitudes, the overall coefficients of transmission ¢, and reflection rg. These
two unknowns are connected by a system of two linear equations,

1 t,
() (®) as

with the matrix product

My M,
Me=M- - -M,=["" "")|. (2.46)
Mrt MTT

To apply this and all the following to the scattered beam in transmission GISAS (sink
location z < 0), we just reverse the order of layers: (0,...,v) — (v,...,0).

Equation (2.45) is a split boundary problem because the given amplitudes tg = 1,
r, = 0 appear on different sides of the equation. It can be reorganized as

tv) 1
() () o

Myt MM,
W =W(M) = - S . (2.48)
MrtMtt (Mrr - MrtMtt Mtr)

with

For later use, we note the inverse function

(th - WtrWrr_IWrt) WtrWrr_l
M= MW) = : (2.49)
Wrr_lwrt Wm«_l

This formalism, originally developed for dynamic X-ray diffraction [13, 14], holds also
if the matrix components are not commutative under multiplication. This will allow
us later (for polarized neutrons, Chapter 4) to replace the scalar matrix components
by 2 x 2 matrices.

From (2.47) and (2.48), we can read off

t, =Myt and ro= M.M,". (2.50)
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With this, the split boundary problem is formally solved. However, the matrix product
M (2.46) is numerically unstable [14, Sects. III, IV]. Therefore, the actual computation
of rp and t, is done through a recursion (Sec. 2.2.2, TODO: polarized case).
If there is one single interface (v = 1), then M = S; yields the standard Fresnel
results, namely the transmitted amplitude
2:%0

1= ——— 2.51
! Ko + K1 ( )

and the reflected amplitude

Ko — K1
o — , 2.52
0 Ko + K1 ( )

2.2.2 Recursive solution

As mentioned under (2.50), the matrix product M (2.46) is numerically unstable [14,
Sects. III, IV]. It is therefore preferable to solve the split boundary problem through
a recursion.? Also, to compute scattering it is not sufficient to determine ¢ and t,;
the radiation amplitudes inside the inner layers are also needed. This is another good
reason to use a recursive algorithm.

In the polarized case, we will use a recursion based on the matrix inversion (2.49)
(TODO: confirm and insert link to section). In the scalar case, we use the much simpler
recursion of Parratt [15]. It is based on the insight that one does not need to compute
t; and r; separately, but only their ratio z; := r;/t;. Spelling out (2.32) with § := §;_;

and st = sli, we obtain

ds™ + st R
By =8 FOTTL e T (2.53)
0~ lst + o~ 1s 14+ Ray
The second expression involves the single-interface Fresnel reflection coeflicient
R = S _R-17hR (2.54)

st ki1 + K

The recursion starts at the bottom with x, = 0.

2In early versions of BornAgain, we started from the bottom with , = 1, and normalized the final
result by division through #y. For opaque samples, this algorithm fails because of arithmetic overflow.
Through some versions of BornAgain, we used bisection to search for the bottom-most layer with finite
transmitted intensity. Then we noted that the simple recursion can be rescued by renormalizing after
each step. This turned out to be equivalent to the Parratt recursion [15].
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2.3 Implementation

Last updated to reflect the actual code in May 2023.

2.3.1 Call chain

All simulations are run through the virtual function ISimulation: :runComputation.

For classes ScatteringSimulation and OffspecSimulation,
most work is done in Compute::scattered_and_reflected,

for class SpecularSimulation in Compute::reflectedIntensity,
whereas class DepthprobeSimulation performs the computation directly in runComputation.

In function Compute: :scattered_and_reflected,

incoming and outgoing fluxes are obtained from functions ReSample: :fluxesIn and fluxesOut,
and stored in instances of class Fluxes, which incarnates OwningVector<IFlux>.

Following that, scattering is computed by functions Compute: :dwbaContribution and

Compute: :roughMultilayerContribution.

Specular intensity is added to the appropriate detector pixel by function

Compute: :gisasSpecularContribution.

In DepthprobeSimulation: :runComputation, incoming fluxes are obtained from function
ReSample: :fluxesIn.

In functions ReSample: :fluxesIn and fluxesOut call either Compute: :SpecularScalar: :fluxes or

Compute: :SpecularMagnetic: :fluxes.

For specular simulations, function Compute: :reflectedIntensity calls either
Compute: :SpecularScalar: : topLayerR or Compute: : SpecularMagnetic: :topLayerR. These

functions only return amplitudes reflected from the top of the sample, whereas the fluxes functions
called for scattering or depthprobe simulation compute up and down travelling amplitudes for each

sample layer.

Functions fluxes and topLayerR are implemented in files ComputeFluxScalar.cpp and ComputeFlux-

Magnetic.cpp, where they share some local functions.
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2.3.2 Scalar fluxes

The core numeric algorithm for the scalar flux computation is implemented in Com-

puteFluxScalar.cpp. Here the code is simplified by omitting roughness and transmis-
sion geometry. The code uses class Spinor, which has components u and v, here rep-

resenting transmitted and reflected amplitude. Interfaces are numbered as in Fig. 2.2.

std:
computeTR(SliceStack& slices,

{

:vector<Spinor>

// Parratt algorithm, pass 1:

// compute t/t factors and r/t ratios from bottom to top.

size_t N = slices.size();
std::vector<cmplx> tfactor(N-1);
std::vector<cmplx> ratio(N);
ratio[N-1] = 0
for (size_t i

N-1; i > 0; i--)

std::vector<cmplx>& kz)

// transmission damping
// Parratt's x=r/t

{

cmplx slp = 1 + kz[il/kz[i-1];

cnplx slm = 1 - kz[il/kz[i-1];

cmplx delta = exp_I(kz[i-1] * slices[i-1].thickness0r0());
cmplx f = delta / (slp + slm * ratiol[il);

tfactor[i-1] = 2 * f;
ratio[i-1] = delta * (slm + slp * ratio[i]) * f;
}

// Parrat algorithm, pass 2:

// compute r and t from top to bottom.

std::vector<Spinor> TR(N);

TR[0] = Spinor (1., ratio[0]);

for (size_t i = 1; i < N; ++i) {
TR[i].u = TR[i-1].u * tfactor[i-1];
TR[i].v ratio[i] * TRI[i].u;

// Spinor.u is t
// Spinor.v is r

return TR;

The are two code blocks, each with a loop over interfaces. The first loop runs

from bottom | = v to top [ = 1. Variables s1p and slm are the coefficients sli of (2.36).
Variable delta is §;—1 as defined in (2.29). These are used for recursively computing
transmission damping factors

201
i =—F— 2.55
-t sl++sl_acl ( )
and Parratt ratios (2.53)
s, +s'ap s, +s' 1
x =61 +— L2 =0 L 2.56
-1 -1 5 -1 l713l++51 o ( )
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Multilayer|)

starting from the bottom value x, = 0. The second loop starts from the top where
to =1, 7o = 0. From (2.32),

4 (st s~ st 457 -
tl_1 =90 ! <2t1 + 27‘1) = Ttl = szlltl' (2.57)

Bringing F}_1 to the other side, we obtain code line 24. By definition, z; = /.
Bringing t; to the other side, we obtain code line 25.
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3 Scattering by rough interfaces

The SLD decomposition (2.1) leaves some freedom how to model interface roughness.
In the standard approach, T(z) always represents the average SLD at given height z.
Insofar, roughness has the same effect as an SLD gradient in a sample that is trans-
lationally invariant in the xy plane. The effect of graded SLD profiles upon reflection
and transmission of a multilayer sample is discussed in Sec. 3.1.

Additionally, the horizontal inhomogeneity of a rough interface gives rise to diffuse
scattering, discussed in Sec. 3.2.

By energy conservation, scattering reduces the reflected or/and transmitted in-
tensity. How to account for these losses in the R/T computation is an open research
question (TODO: link to section).

3.1 Propagation through graded interfaces

3.1.1 Interface with tanh profile

Graded interfaces have a smooth SLD profile, i.e. the function w(z) or x2(z) evolves
continuously from one bulk value to the other. Among the SLD profiles that can
be solved analytically, the tanh (Fig. 3.1a) profile is particularly important. A good
summary of the solution can be found in Ch. 2.5 of Lekner [16].! Whereas Lekner
only considers the electromagnetic case with a profile €(z), we summarize the theory
in terms of K = eK? — kﬁ
We posit a profile
H?L + fi% /ig — K2 z

£ tanh —. (3.1)

R (z) = 5 T3 or

The parameter 7 is related to the roughness length o of the BornAgain API through
3/2
T = (E) o. (3.2)
2

For reference, we note the derivative

d , ki — K2 o,z

— = h™ —. 3.3
dzl{ (Z) 4T o8 27 ( )

"He credits Eckart (1930) and Epstein (1930) for the solution. For a short summary, see also [17,
§ 25, exercise 3].
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Figure 3.1: (a) Functions tanh and tanhc. (b) Reflectivity reduction factor, obtained by
dividing (3.7) through the Fresnel reflectivity (2.51), as function of k.7 for ratios kp/k of 0.1,
0.2, 0.4, 0.9, 1.1, 2, and 5.

The solution ®(z) involves a hypergeometric function. Here we only note the reflection
coefficient [16, Eq. 2.88]

21 SINL T (K — Kp)

(3.4)

Tab =€ Sinh T (Ka + Kb)
The phase ¢ is a real number as long as k, and kj are real. The transmission coefficient
tap is communicated in [18]. Using various properties of the Gamma and sinh functions,
one can verify flux conservation (2.37).

In the limit 7 — 0, the phase factor ¢ in (3.4) goes to zero. For simplicity, we let
¢ = 0 throughout. This approximation is equivalent to an adjustment of the interface
position z4 by an amount that can be expected to be small compared to the interface
thickness 7,p.

To rewrite (3.4) in a form inspired by the Fresnel reflection coefficient (2.52), we
use the identity

sinh(z —y)  sinhwzcoshy —sinhycoshz  tanhy — tanhx

sinh(z +y)  sinhazcoshy +sinhycoshz  tanhy + tanhx (3:5)

with = := 17k, and y := w7Kp. We write tanhc x := (tanhz)/z (Fig. 3.1a) and define
the roughness factor

__|tanhc wTRy
Rab = V tanhc 77k, (3.6)
With all this, (3.4) can be cast as

R ke —R
Tab = (ibl fa abnb? (37)
Rab %) + Rab"ib

which has the form of the Fresnel reflection coefficient (2.52), except for the factors ’R;bl
and Rgp. For 7 — 0, these factors go to 1 so that (2.52) is fully recovered (Fig. 3.1b).
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The reduced 14, of (3.7) can be obtained from the basic transfer matrix equation (2.32)
if the coefficients s* of (2.36) are replaced by?

st =R} £ Rapkiv/Fa- (3.8)

It is easily verified that the energy conservation (2.37) still holds.

3.1.2 Névot-Croce factor

The Névot-Croce factor is an exponential attenuation factor for the reflection coeffi-
cient:

- _ 2
Tab = Tab € 2kakbaaba (39)

where rq, is the Fresnel reflectivity (2.52) of a sharp interface. This form can be
obtained in various ways, with more or less hand-wavy arguments or approximations.
As e.g. used by Tolan it can be obtained by averaging the Parrat recursion equations
over a Gaussian material profile [19], equation 2.34. The same result can also be
obtained from formal perturbation theory, see e.g. [20] and references therein.

If the transmission coefficients are left unaltered, the resulting reduction in reflec-
tivity can be interpreted as a loss into diffuse scattering channels. This interpretation
is mentioned by Névot et al. [21].

More questionable is the simultaneous modification of the transmission coefficient.
Currently BornAgain uses

Fap = tap et Fa=he)0®/2, (3.10)
where 4, is the Fresnel coefficient (2.51). This is the result obtained by Tolan [19,
Eq. 2.35], and is also given by de Boer [20] as a result from formal perturbation theory
in the limit of very small lateral correlation length. To obtain 4, and t,, from the

basic transfer matrix equation (2.32), we need to replace the coefficients s of (2.36)
by

sljE = (1 +ri—1/K) exp(—(Ki—1 F Hl)202/2), (3.11)

which is consistent with [22, Eq. 3.114].
However, the total reflected and transmitted flux q|7ep|? 4 Kp|tas|?, computed as

in (2.37), is greater than the incoming flux k,. This takes all credibility from (3.10)
and (3.11).

2Implemented in file ComputeFluxScalar.cpp, function transition [30may23].

BornAgain June 12, 2023 3:3

{{EslpmTanh}}

{{ExNC}}

{{EtNC}}

{{EslpmNC}}


https://github.com/scgmlz/BornAgain/blob/master/Resample/Specular/ComputeFluxScalar.cpp

3.2 Scattering by a rough interface

Fragmentary. With contributions by Randolf Beerwerth and Walter Van Herck.?

3.2.1 Scattering in DWBA

In first-order distorted-wave Born approximation (DWBA), the scattering cross section
is given by

2
% - ’/d% W () V(0) We(r)| = [(W5[V]2g), [, (3.12)

where V(r) is the deviation from a reference potential V°(z) that is used to compute
the distorted wave function ¥ for given incident and final far-field wave vectors ki, k.
Since the distorted waves are governed by a mean potential that only depends on z,
they have the form

U(r) = eXITId(2). (3.13)
We introduce the scattering vector
q = kf — ki (314)

and the vertically integrated form factor
F(r)) = /dz O (2)V(r)Pe(2) = (i|V[Py), (3.15)
so that we can write (3.12) as

do iq)(—r) +r *
o= /d27” /d2rll oty (=rj+ry) o (rﬂ)F(r”). (3.16)
We recast (3.16) as a Fourier transform

do ianr
- A/d%”e‘n I G(r)) (3.17)

with the illuminated area A and the spatial correlation function

Glr) = A / & F* (e P (x] + ). (3.18)

3Ingested from ba-intern/theory on 29may23. Material was originally Roughness.tex, then ch. 4 in
Stratified.tex, then again in a separate document RoughScatter.tex.
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3.2.2 Random potential

To describe disordered interfaces, we assume that the potential depends on a random
variable u(r):

V(r) = V(zu(r))). (3.19)

The scattering cross section (3.12) must be replaced by an average over the function

u(r),

do

=5 = (lwvien, ) . (3.20)

{u}

The subscripts r and {u} could help to distinguish the quantum-mechanical and the
statistical average. However, to avoid overloaded notation, we will omit them in the
following. Rather, we will always use big angular brackets to mark the statistical
average.

The Fourier transformed cross section can be maintained as in (3.17) provided
the spatial correlation function (3.18) is redefined as

Cﬂrw::44_{/d%ﬂ<FWUKPW)F@Nrﬂ+rnD>- (3.21)

We now assume that the distribution of the u(rh) and u(r’H + 1)) depends only on the
distance r||, not on the absolute location r’H. Thereby, Equation (3.21) can be simplified
as

G(r)) = (F*(u(0) Fu(x)))). (3.22)

The average involves a two-point correlation function Py(u,v;r)):

G(r|) = /du /dv Py (u,v;r))) F*(u)F(v). (3.23)

We anticipate that the limiting behavior of P is governed by the one-point distribution
function Py,

Py(u)d(u—v) forrj —0,

(3.24)
P (U)Pl (U) for r) — Q.

PQ(U, v; I‘”) — {

3.2.3 Covariance ex machina

In the pioneering paper by Sinha et al. [23] and in much of the subsequent literature
[24], the scattering cross section is defined differently from Equation (3.20), namely as
the covariance

do

= = cOV{u}(<\pi|V|\Iff>* : <\Ifi!V|\I/f>> = < (W3] W) > - ]< (Wi |V ]Wy) >)2

(3.25)
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To compensate for the negative extra term, there must be another cross section

do

Q= v )| (3.26)

T/R

= A/d2r et (F(0)) (F(r))). (3.27)

The one-point averages are governed by the distribution function P;(u) that does not
depend on horizontal location. Hence

i fan () =
T
= A(2m)%(q)) ’<F>’2 . (3.29)

do
do

This cross section is only nonzero if q = 0. Elastic scattering must fulfill kf = k;. To-
gether, these conditions imply ki, = +kg,, which is only satisfied by the direct (trans-
mitted) and by the specular (reflected) beam. For this reason, the cross section (3.26)
has been labelled “R/T".

In the present context, we are only interested in scattering out of the transmitted
or reflected beam. Therefore we can ignore the R/T cross section (3.26), and substitute
the covariance (3.25) for the original cross section (3.12). We will see that this simplifies
computations. So we replace (3.17) by

do iq)r
m = A/d27'|| el AG(I‘H) (3'30)

with the modified correlation function (3.22)

AG(r)) _cov( *(w(0)), F(u (r”)) (3.31)

/du/dvAP2 w, ;1)) F*(u) F(v). (3.32)

The integral involves the distribution function

APy (u,v) = Py(u,v) — P1(u)Py(v). (3.33)

3.2.4 Sharp, rough interface

We consider a sharp transition between two different materials that takes place at a
rough interface located at height z = u(r||). The scattering potential is the difference

V(r) = Vau(zur))) — VO(2) (3.34)

between the actual potential for a given interface profile u

Va+Vb+Va—Vb

sgn(z — u) (3.35)
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and the reference potential

VitV Va-W
'; b4 5 P so(2) (3.36)

Vo(z) =

that has been used to compute the vertical wave functions ®;, ¢, and therefore does
not contribute to scattering. The constants V,, V4, are the values of V¥ in the bulk above
and below the interface, denoted by layer indices a and b. The profile function sg(z)
has the limits sp(+o00) = £1. We rewrite (3.34) as

V(r) = (V% — Va) V(z;u(r))) (3.37)

with the dimensionless difference potential

V(z,u) = % [sgn(z — u) — so(2)] . (3.38)

To get rid of a constant prefactor, we rewrite the correlation function (3.31) as
AG(r)) = [V — Val” Ag(ry) (3.39)

with the reduced correlation function
Ag(r)) = Cov(f*(u(O)) u(r))) /du/dv APy (u, ;1) f*(u) f(v)  (3.40)
and the reduced vertical form factor

Fu) = / Az &5 (2)V(2: )y (2). (3.41)

3.2.5 Stepwise reference potential

To facilitate computations, we approximate the smooth function sy(z) by a step func-
tion that takes J different values s;, with layer index j running from b =1 to a = J.
We decompose the vertical wave function ®4 (with d =1,f) as

J
= [z € L;]Pg( (3.42)
J=1

where L£; denotes the z interval occupied by layer j. Within one layer, the vertical
wave function consists of two exponentials with constant coefficients,

Bgi(2) = tgie” "7 4 et (3.43)

To prepare for summation over downward and upward travelling waves, we rewrite
(3.43) as

Dy;(z) = Z Cdja®"* (3.44)

a=—1,+1
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with cgj— = tg;, cgjy = 74j, and K+ = £k;. With the further definitions

Qja,B = Hfja — I‘iij[;, (345)
Bjag = CijaCtjss (3.46)

the wave function product in (3.41) becomes

-t =+
B (2)8i(=) = Y[z € L3133 Bjageies”. (3.47)
a B

J
Diffuse scattering is governed by the dimensionless difference potential (3.38), which
can be written

V(z,u) = % [sgn(z — u) — 55()] (3.48)

with a function j(z) that yields the layer index for a given vertical coordinate z.

3.2.6 One-step reference potential

We now choose a reference potential that has a single step at z = 0. In this case, the
profile function is just so(z) = sgn(z). The dimensionless difference potential (3.38)
and (3.48) can be further simplified to take the form

V(ziu) =[0<z<u]—[u<z<0], (3.49)
with the Iverson-Knuth indicator bracket defined by [false] = 0 and [true|] = 1. After
some rearrangement we find

b,a -+ -

7+ u
flu) = 3w e )30 By [ et (3.50)
o B

J
From here on, it is convenient to work with a bundled index p = («, 3) that runs

from 0 to 3 and stands for the four possible combinations of ++. With the further
abbreviation

Ajp = Bju/Gju; (3.51)
the result of carrying out the integral in (3.50) can be written as
b,a ++

fw)=>ueL;]> % (elin — 1) . (3.52)

J

The reduced correlation function (3.40) is just the covariance of f*(u(0)) and f(u(r))).
Only terms that involve both u(0) and u(r|) contribute. This leaves us with

b,a ba 44 44

Ag(]ﬁ'”) = Z Z Z Z A;u,Akl/Dj,u,klj(rH) (353)
j k w v
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with
Djuson(x)) = /ﬁ du /ﬁ dv APy (u, v x)) e~ invtidew. (3.54)
j k

If the vertical scattering wavenumbers ¢ are real, then D;M i = Dk jpu- This allow us
to compute (3.53) as

2 *
Ag(r”) = Z ’AJ'M| Djﬂ,j#(r”) + Z 2Re Aj'uAkVDj“,ky(rH). (3.55)
Jp Ju<kv
The operator < under the second sum refers to some lexical ordering of the indices
that is used to preclude double counts.
3.2.7 Gaussian roughness

From this point on, we assume a specific distribution function P», namely a bivariate
normal distribution [25]. For brevity, we shall use the standard normal distribution

Ni(X) = \/12? exp <_);2) , (3.56)

and the standard bivariate normal distribution [25]

NQ(X,Y,/)) =

1 X24+Y2-20XY
p{_ + p } (3.57)

—F————€X
21y/1 — p2 2(1-p?)

NG
20 +0) 20 —9)

with p < 1. For p — 1, one can see from (3.58) that N2(X,Y") goes to N1(X)6(X —Y).
We now choose

Pi(u) = Ny (%) (3.59)
and

Py(u, ;1)) = Ny (u g;p(r”)> . (3.60)

O_ )
The standard deviation o characterizes the vertical extent of interface fluctuations. It
is undifficult to verify that

/dv Py (u,v;r)) = Pi(u) (3.61)
for whatever p(r)). Physics dictates that 0 < p(r) < 1 for r| # 0, and p(0) = 1. A
specific horizontal correlation function p(r|) will be chosen later.
The covariance distribution function (3.33) is given by
u v
APQ(’LL, % I'”) = AN2 ( - p(r”)) (362)

5
g o
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with

AN (X, Y5 p) = No(X,Y;p) = Ni(X)N1(Y) (3.63)

N <Y+X> N, (Y—X)
2(1+p) 2(1=p)
Y+ X Y - X
- M (\@ ) Ny <\/§ > ; (3.64)

which has the small p expansion

ANy (X,Y;p) = Ni(X)N1(Y) [pXY + O (p?)] . (3.65)

3.2.8 Analytic plane waves approximation

The evaluation of the correlation function (3.53) can be simplified decisively if the
wave functions ®, (d = i,f) in the vertical form factor (3.15) are approximated by
two exponential functions with constant amplitudes. This amounts to omitting the
j dependences in (3.44). In the literature, it is typically achieved by analytic continu-
ation of the wavefunction of the upper layer, ®4,, into the lower layer b, or vice versa.
According to Pynn [26, p. 605], this approximation is implicit in the reflectivity theory
of Névot and Croce [27]. Sinha et al. [23, following Eq. 4.37] introduced for the DWBA
computation of diffuse scattering. Holy et al. [24] suggest to compute the scattering
intensity twice, with ®4, approximated by ®41,, and vice versa. The approximation is
valid if the two results agree within requested precision.

Under this assumption we can omit the layer index from B, g, A. The sums over
J,k in (3.53) become trivial, the integrals over u,v are no longer restricted to layers,
and the problem reduces to

++ £+
g(r)) ZA* /du /dv APy (u,vir))e —laputiquy, (3.66)
With (3.62) and (3.64), the solution is straightforward [23, Eq. 4.42]:
++ ++
g(r)) ZZA* [ 2quavp(r)) _ 1| o= (aat+a2)/2. (3.67)
For small p, the difference in the bracket can be linearized in p. Recalling that A = B/q

(3.51), we obtain [23, Eq. 4.43]

++ £+

Ag(ry) = plr))o ZZBBe Haia) /2, (3.68)
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3.2.9 Refracted waves, linearized correlation

We now reconsider the problem of computing the correlation function (3.53) based on
wave functions that account for refraction and reflection by the mean interface, and
therefore are plane waves only within one layer. In other words, we proceed without
Sinha’s approximation of Section 3.2.8.

Instead, to make the problem computationally accessible, we use (3.65) to linearize
in p from the onset. So approximate (3.54) as

Djui(r)) = p(r))0” Ef () Br (ko) (3.69)
with the shorthand
Ej(q) = / at N, (3) 4 giqu, (3.70)
L, O o/ o

Recall that j and k take the values b,a. The layers cover the semiinfinite intervals
Ly, = (—00,0) and £, = (0,00), hence

Ea(q):/ooodUNl(U)Ueiq"U, Fy(q) = —Ea(—q). (3.71)

Use partial integration to obtain

E.(q) = \/12? + iq{erfcx <_j/q;> , (3.72)
Eyw(q) = —\/12? + iq{erfcx (ng) (3.73)

with the compensated complementary error function (function w(iz) of Abramowitz
and Stegun [28, 7.1.3])

erfex(z) = ezzerfc(z). (3.74)

If we make the additional assumption that B, ¢, A are layer independent, as in Sinha’s
plane-waves approximation, then it is straightforward to recover the linearized re-
sult (3.68) from the previous section.

3.2.10 Horizontal correlations

This is a verbatim copy of Sect. 5.6 from our reference paper [1], except for notes in
boldface or italics.

The reduction of reflected and transmitted intensity is described by the Névot-
Croce factor [27]. ISGISAXS supports this loss factor, but not the diffuse scattering.

In BornAgain, diffuse scattering and beam attenuation are computed consistently.
[Not yet! This needs urgently to be implemented.] The roughness model is
taken from Ref. [29]. The height h is assumed to be a Gaussian random variable. The
correlation function at in-plane distance R is (1:21)

C(R) = (h(0)h(R)) = o%e~B/O™, (3.75)
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This model has been introduced into the field of X-ray reflectivity by Sinha et al [23].
Compare their Eqns. 2.9 and 2.23.

The user needs to specify the amplitude o, the correlation length &, and the Hurst
parameter H. The latter is restricted to 0 < H < 1. According to Ref. [29], it defines
the fractal box dimension D = 3 — H of the interface: The smaller H, the more jagged
the interface (see Fig. I.7). Again, the better reference is [23], and work cited therein.

If there are two or more interfaces, then their height profiles may be correlated.
Following again Ref. [29], this is specified through a vertical cross correlation length
&1 that governs the correlations between two interfaces j and k, (1:22)

1 {0k

(hy ()i (R)) = 5 - cj(R)+%'ck(R) e~ lzi—ml/EL, (3.76)
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3.3 Literature review: reflectivity and scattering from
rough surfaces

Scattering from a rough surface has been studied first at a macroscopic level, for sound
and radar waves (see books in TUM OPAC; see references in [30]). For light scattering
literature, see Refs. 1-26 in [31].

Steyerl 1972 [30]: First detailed discussion of neutron reflection from rough
surfaces. Main application interest is total reflection in neutron guides. Unperturbed
potential is step function. Wave equation in integral form; Green’s functions, ascribed
to saddle point method, appear in Eqns. 15,16 without derivation; explicit expressions
for all four cases z,2’ < 0 are given with some more computational details in [32,
Eqn. 29]. Compact and credible expressions for upward and downward scattering in
Eqns. 20,21. Result for reflected and transmitted intensity thoroughly analysed and
criticised by Pynn [26]: neglect of phase factor makes approximation irrelevant for
reflectometry.

Névot & Croce 1980 [27]: Experimental X-ray study. Highly cited. Attenu-
ation of the reflected beam described by the Névot-Croce factor [Eqn. 3]. Theoretical
section is hard to read; starts from previous results of Croce et al; claims to be self-
consistent (auto-cohérente, p. 764). The key results of this work are rederived in much
shorter, clearer, and more standard ways by Pynn [26] who also explicates which ap-
proximations were made.

Beckmann and Spizzichino 1987 [33]: Book about radar reflections; almost
entirely concerned with wavelengths shorter than local radius of curvature, irrelevant
for reflectometry [26].

Sinha et al 1988 [23]: Top-cited paper. Sects. IT and IIT are in Born Approxima-
tion, with application e. g. to powders. Application to liquid interface. They consider
only single interfaces. Grazing incidence and DWBA come in Sect. IV. For ¢, > q., a
small-¢ expansion reproduces the Névot-Croce factor. For ¢, < q., on the other hand,
|R| < 1 is not found: 1st-order DWBA violates the optical theorem; the 2nd order
would be needed, but is not worked out. Pynn [26, Eqn. 10] criticizes the forward
scattering term [23, Eqn. 4.12], which involves the wrong incoming eigenfunction (for
the plane instead of the rough surface).

Pynn 1992 [26]: A critical review of previous work, especially Steyerl [30], Névot
& Croce [27], and Sinha et al [23]. Névot & Croce got the reflectivity essentially right,
except for reflection coefficients smaller than 1075 [p. 605]. Also discusses correlated
interfaces.

Holy & al 1993 [24]: Concerned with multilayer reflectivity and diffuse scat-
tering. Very readable summary and extension of Sinha theory. They write the per-
turbation Hamiltonian of a multilayer system as a sum of single-layer contributions.
This splits up into a sum of four terms, similar to the expression Walter uses. They
have only four terms as they assume that the fields are identical directly below and
above the interface. Walter drops this condition and hence gets twice the terms with
different averaging below and above the interface. As a consequence of writing the
Hamiltonian as a sum of single interface contributions, diffuse scattering leads to a
double sum with the covariances appearing. Here correlation models come in. They
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introduce two of them: one without and the second with vertical correlation.

Summarized and extended to periodic multilayers by Holy & Baumbach [34]. Holy
& al also contributed to the book [35]; in particular, chapter 11 could be interesting.

de Boer 1994 [36]: Purely theoretical description of specular reflectivity on
single rough interfaces. Second order DWBA calculations of the reflection and trans-
mission coefficients in the T-matrix formalism. The resulting expressions include the
lateral correlation and are shown to have the Névot-Croce factor as a limiting value for
small correlation length (i.e. negligible diffuse scattering). For large correlation length,
the Debye-Waller like factor is recovered, while for intermediate correlation length an
interpolation factor needs to be evaluated. This factor includes a two-dimensional
surface integral. For a suitably chosen correlation function, it can be reduced to a
one-dimensional integral which facilitates numeric evaluation.

de Boer & Leenaers 1996 [20]: Survey article that briefly summarizes results
from several other articles. Explains under which limiting conditions results are appli-
cable. Gives formulae of the Fresnel coefficients for both reflection and transmission
on a single interface. Névot-Croce recovered as limit of small correlation lengths, can
also serve for multilayer calculations. This limit corresponds to weak scattering and
can be compared to graded interfaces, i.e. the numerical approximation via Slicing
that completely neglects diffuse scattering. Mentions DWBA leading to intensities
greater than unity below the critical angle, introduce Rayleigh method to circumvent
this. This leads to another expression for the Fresnel coefficients for large correlation
lengths, that can also be applied to multilayers.

Introduce an expression for the Fresnel coefficients for intermediate correlation
lengths, that relates to the lateral correlation function. Only approximately applicable
to multilayers, give reference to other 1996 paper [37].

Suggest interpolation approach to treat the fields in the vicinity of an interface.

Suggest also other starting points for the perturbative approach, namely to use
already corrected Fresnel coefficients or graded interfaces. Here, they specifically men-
tion the tanh profile as implemented in BornAgain.

Other potentially interesting papers from the same author: [38] [36]

The lateral correlation function implemented in BornAgain is taken from the
paper [39].

de Boer 1996 [37]: Deals with multilayers and considers the effects of roughness
in both specular reflectivity and diffuse scattering. Employs the T-matrix formalism to
compute corrections in the DWBA up to second order, rather hard to understand and
result not easily usable (for me, rb). Uses flat interfaces as the starting point for per-
turbation theory in Section II and graded interfaces in Section III. The latter is rather
vague and hard to grasp. Results are presented, dominantly for x-ray fluorescence.

Concludes that as a starting point for the DWBA graded interfaces should be
used, if both the reflectivity as well as the roughness are reasonably large. Suggests
an interpolation method for the fields as a starting point for the DWBA, as the field
obtained from Névot-Croce factors are wrong in the vicinity of interfaces.

Claims that the second-order term for diffuse scattering is generally negligible,
except when the reflectivity is large as well as for large lateral correlation length and
roughness. For specular reflection, mentions the first and second order contribution to
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be of the same order in the roughness and is hence only negligible for small roughnesses.
However, stresses that the DWBA is only valid for small roughness values or far above
the critical wave vector. Their way of extrapolating [36] the results is only valid for
single interfaces or very large perpendicular correlation.

Also mentions that he is not aware of any samples, where the second order con-
tribution has to be considered and that the theory is completely untested.

Caticha 1995 [40]: Studies graded interface with roughness.

Rauscher et al 1995 [41]: Combine the roughness theory of Sinha et al [23]
with bulk density fluctuations for different geometries, thereby specializing the generic
formalism of Dietrich and Haase [42].

Ogura & Takahashi 1996 [43]: Scattering and reflection from a random sur-
face in the language of mathematical physics, using Itd stochastic functionals. The
surface has 100% reflectance (Eqns. 3.9-10), so they miss the most difficult aspects of
the problem. Possibly a starting base for collaboration with mathematical physicists;
otherwise without practical value for us.

Toperverg et al 2000 [44]: A short note on the optical theorem that ensures
energy conservation under reflection, transmission and scattering. The only cited lit-
erature is Sinha et al 1988 [23] and de Boer 1994-96 [36, 39, 37]. For second-order
DWBA they refer to a preprint by Toperverg et al 1997 (request pending). This paper
drew our attention to the optical theorem, but is most probably made obsolete by
other publications that work out more details.

Fuji 2010: [45]: Seems to be the initial claim, that the Parrat formalism as
it is currently used with roughness included in the Fresnel coefficients assumes flux
conservation and hence cannot account for losses due to roughness. Detailed derivation
of a modified Parrat formula that contains both Fresnel r and t coefficients. Gives
examples where unphysically deep fringes are removed by their new formula. The
same example does indeed seem to show weird behavior that depending on the amount
of roughness deep minima change their position.

Fuji 2013: [46]: They derive (short) a different version of the the Parrat recur-
sion which does not imply conservation of flux. The claim is that this reduces deep
unphysical minima in Kissieg fringes when roughness is added.

Fujii 2014: [47]: Presents a modified version of the Parrat formula, that ex-
plicitly depends on the Fresnel transmission coefficients. If conservation of the flux is
imposed, his formula reduces to the well-known Parrat formula, where only the Fres-
nel reflection coefficient is present. More mathematical derivation of the approach is
presented in [46]. Numerical results are presented for an example, where the author
shows that the usual formula yields very good results for roughness parameters that do
not agree with independent experimental results (TEM). His modified formula yields
good agreement with the independently verified roughness parameters. The applied
transmission coefficients are given without much explanation, but the given expression
kind of resembles the expressions given by Tolan [19] for the large correlation length
limit.

Fujii 2015: [48]: Computes effective roughness factors, where the lateral corre-
lation is considered. Obtains an expression that again resembles equations (2.40) and
(2.41) in the book by Tolan[19], however, with an effective roughness. Claims good
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agreement with AFM measurements.

Chukhovskii 2011 & 2012 [49, 50]: Claims that DWBA is inapplicable for
large roughness rms o. As an alternative, develops self-consistent wave approximation
(SCWA). Starting from a Green function [49, Eqn. 4], the derivation of the scattering
cross section [49, Eqn. 20] and of the reflected intensity [49, Eqn. 19] looks relatively
straightforward. Subsequent averages of random functions for the standard Gaussian
surface model, however, lead to very long expressions [49, Eqns. 22,23]. The optical
theorem is only satisfied in the limit of large surface correlation lengths (k£9? > 1)
[50].

TODO https://doi.org/10.1107/52053273315016666 (2015)

TODO https://www.nature.com/articles/s41598-020-68326-2 (2020)

Chukhovskii & Roshchin 2015 [51]: Yet another alternative to DWBA: ex-
pansion in g-eigenfunctions of the plane-surface problem.

Maruyama, Yamazaki & Soyama 2018 [52]: Conference proceeding, where
the authors present actual computational results applying the theory from de Boer
[36, 37], i.e. DWBA in second order to the specular reflectivity of multilayers. Com-
parison to the Névot-Croce factor, as well as contributions of the first and second order
perturbation contribution. Their chosen example is very close to the Ti-Ni multilayer
sample that was often considered by BA team members so far and could serve as an
interesting test case for testing and comparing numerical results.

Hafner 2019 [53]: Contains simulations and experimental data of off-specular
simulations where the contributions from specular reflection and scattering are put on
a common scale. Cross sections are incoherently added, with geometric corrections
arising from detector resolution and spread in angles/wavelengths. Mentions approxi-
mation valid for small scattered intensities. Summarizes statistical treatment of rough
interfaces, similar correlation approach as in BornAgain.
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4 Polarized wave propagation and scattering

In this chapter, we generalize our treatment of wave propagation and grazing-incidence
small-angle scattering to polarized neutrons. We therefore need to study spinor wave
equations, in contrast to the scalar theory of the previous chapters.

4.1 Polarized neutrons in 2+1 dimensions

4.1.1 Schrodinger equation for neutron spinors

In presence of a magnetic field, the propagation of free neutrons becomes spin depen-
dent. Therefore the scalar wavefunction of Sec. 1.1.1 must be replaced by spinor V.
The Zeeman energy is given by the operator —vy pinuc1 B with the neutron gyromag-
netic factor v, >~ —1.91, the nuclear magnetron 1, the magnetic induction B and
the Pauli vector &, composed of the three Pauli matrices. With the unsigned magnetic
moment of the neutron, pyn = |Ynfinucl|, the Schrodinger equation (1.1) becomes

h2
{—2v2 +V(r) + uuB(r)é — hw} T(r) = 0. (4.1)
m
According to Ref. [54], the magnetic field is usually applied parallel to the sample
surface, but we do not rely on this.
We abbreviate the nuclear and the magnetic scattering-length density as

PN(r) = oma(r) and M) = S5 B(), (4.2)

and we write B for the unit vector in direction of the magnetic field B. So the total
reduced potential is given by the operator

o(r) = pN(x) + M) B(r)6, (4.3)
and we can rewrite the Schrodinger equation in analogy to (4.4) as

{V? + K? — 47d(r) } U(r) = 0. (4.4)
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4.1.2 Propagation in a multilayer

In the decomposition (2.1), both terms may become operators acting in spin space,
o(r) = v(z) + 60(r). (4.5)
The unperturbed distorted wave has the form
B(r) = HITID(2). (4.6)

The horizontal wave vector k| is constant across layers. This motivates us to introduce
the vertical vacuum wavenumber kg == , /K2 — k:ﬁ The vertical spinor wave function
®(z) obyes the equation

{V?+ K3 — 4710(2) } ©(2) = 0. (4.7)

In absence of a magnetic field, v(z) is scalar (or proportional to the unit matrix i),
and each spinor component will propagate exactly as in the scalar case of Sec. 2.1.
Conversely, if there is a nonzero magnetic field, then the neutron spin will undergo
Larmor precession, which in spinor representation shows up as oscillations between
the two spinor components. In consequence, when an incident plane wave hits a mag-
netic medium it becomes a superposition of two plane waves that propagate with two
different vertical wavenumbers that correspond to the two eigenvalues of (4.7).

We now consider a homogeneous layer with constant potential. Similar to [55, 56],
we write the formal solution of (4.7) as

D(z) = e R T 4 eR*R, (4.8)

where T" and R are the transmitted and reflected spinor amplitudes. By comparison
with (4.7), we see that the square of the operator & is

2 = kE —4n0 = k2 — 4n (PN + pMB6). (4.9)

4.1.3 Wavenumber operator i

Without derivation,! we state that the square root of 42 is the operator

R= % |:(C+ +c )+ (cy —c )B&|, (4.10)

expressed through its eigenvalues

ct = \//i% — 4mpN £+ 47 pM. (4.11)
With the abbreviations

a=cy+c_, f=cr—c_, and b:= BB, (4.12)

'To verify, use standard properties of Pauli matrices. Square (4.10) to reproduce (4.9). Then
confirm that A + £2 are eigenvalues of #2. See also [17, § 55, Exercice 1, p. 198].
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we obtain the matrix components?

1 1 a+b, by—ib
= (a+bs)=-[" ) (4.13)
2 2 \b; +ib, a—b,

For future reference, we note the inverse operator?

11 B L \RaA
R = 2o |:(C+ +co)— (et c,)Ba} (4.14)
2 A
— m(a — bo') (415)
__ 2 a—b: —betiby (4.16)
o> =B \—p, —ib, a+b ) '

It does not exist if pN is real and pM = kZ/(47) — pN. If pM is even larger, then &
becomes pure imaginary, causing evanescent waves, to be discussed later (Chapter 5).

4.1.4 Eigendecomposition of i

To evaluate functions of the operator &, we will need its eigenvalue decomposition. We
start with the matrix B&, which has the eigenvalues +1 and the normalized eigen-
spinors

V+:1<1+BZ> v_:1<éx_iéy>. (4.17)
\/2(1+ B,) \Pz +iBy 201+ B,) \~1—B:

For readability, we have omitted the subscript B from the components of B. and the
same eigenvectors as B&. We introduce the eigenvector matrix

5 1 1+B, B,—iB
QB) = (Vi V) = ———= ( - f’) : (4.18)
2(1+ B.) B, +1iB, -1-DB,

The normalization factor becomes singular for B, = —1. In this case, the matrix B&
is just &, and has eigenvectors V, = (0,1)" and V_ = (1,0)!. Furthermore, we need to
take care of the case B = 0. Altogether, we let

1 if B=0,
QB) =< 6. if B, = —B, (4.19)
(B+2)6/1/2(1+ B.) else.

2Currently (jun23) implemented in function MatrixFlux: :computeKappa().
3Currently (jun23) implemented in function MatrixFlux: : computeInverseKappa().
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The matrix & has the eigenvalues c+, and the same eigenvectors as Bé-. Accordingly,
it has the eigendecomposition

N 0 N
k=@ <C+ ) Q, (4.20) {{Ekeigenl}}
0 c-
and any holomorphic function f() can be computed as*
N 0 N
f(k)=0Q (f(c+) > QT- (4.21) {{Efkeigen}}
0 fle)

4Currently (jun23) implemented in function MatrixFlux::eigenToMatrix.
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4.2 Refraction and reflection at interfaces

4.2.1 Transfer matrix

To match solutions at layer interfaces, we use the transfer matrix method introduced
in Sec. 2.1.4. That section was formulated in such ways that only minimal modifications
are needed now. Instead of the vertical wave function ¢(z) and the amplitudes ¢ and r,
we now have the spinors ®(z), T, and R. Instead of the vertical wavenumber x = k.
(2.6), we have the operator i. The phase factor § (2.29) also becomes an operator,

by = etfudi, (4.22)
The equation system (2.32) becomes

(TH> =M, (T’> (4.23)
Ry R

with the 4 x 4 transfer matrix in place of (2.33)
Ml = ]lel Sl- (424)
The phase rotation matrix (2.34) is replaced by the block matrix

s 1
50
D= ., (4.25)
0 4

to be discussed in the next section. The refraction matrix (2.35) also is replaced by a
block matrix,

1( & &
Si== "t (4.26)

2\ o~ ot

S 5

with the coefficients®

§it = 1£ & Ry (4.27)
4.2.2 Phase rotation matrix
With the eigendecomposition (4.21), the phase rotation matrix (4.22) can be written®
. N . eidc+ 0 R
6 =Rl =Q ( , ) Q. (4.28)
0 ezdc,
iad/2

For the analysis of numerical stability, the critical factor e may be drawn in front

of Q in (4.28),

idB/2 0
& iad/2p [ © 3t
S=e Q( . e—z‘dﬂ/2>Q‘ (4.29)

SCurrently (jun23), the matrix blocks §l+ and §; , possibly modified by roughness factors (see below

. TODO), are computed through local function refractionMatrixBlocks in ComputeFluxMag-
netic.cpp.

SCurrently (jun23) implemented in local function PhaseRotationMatrix in file MatrixFlux.cpp.
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4.3 From old document “PolarizedIlmplementation”

4.3.1 Numerically stable implementation

We combine the amplitude vectors for + and — polarization into a single matrix of
dimension 4 x 2

t.+ i~
(Y L), (4.30)
ritoT

where the submatrices

L=(u"e) end Bi= () (4.31)

HEU HKH

are of dimension 2 x 2. The transfer matrix equation (4.23) can then be written
simultaneously for both polarization states as

T, T,
=), |22 (4.32)
Rq Ry
Explicitly performing this multiplication yields two matrix recursion equations
1.
T,= 507 (5 T+ 5 Ry (4.33)
Loro- ot
Ry =56 (5T + 5" Ry (4.34)

After every step (4.23), we want to rotate and normalize the polarization, such that
we obtain the bottom boundary condition 7, = 1. For this purpose, we define the
rotation matrix S as o

Téz&-i:;, (4.35)

and it must also be applied to rotate the reflected components as well ”

R, =R, Sq. (4.36)

Consequently, the recursion equations reduce to the primed version

T,=1 (4.37a)

S, = %5—1 (§+ + g—&)) =415, (4.37D)
/o lA a— o+ !

i—Q(S(s +3 i) Sa. (4.37c)

"What happens here is a rotation of the wave function written as a superposition g;i =at®, "+
b*®, . This is just written as a single matrix equation and from this it is obvious that the same
matrix must be applied to both T, and R,.
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This process requires the inverse of &_1, which is easy to obtain

(%7),, —(E0).),
S“_thgal _<Sa_l>1§,1 (Sa_1>071070 > s

S]

—_

and since it does not contain the inverse 6 ~'-matrix anymore can be evaluated numer-
ically stable.

For the computation of reflectivity alone, we would be done at this point, however,
for perturbation theory, we still need the amplitudes within the layer stack. Therefore,
all rotations of the polarization need to be forward-propagated according to

0
.= [ s (4.39)
0
dla = 0 H i (4.40)

(4.41)

=]

0
for a > 1, where H Si = S4-15-2---50
i=m—1
The proof of these relations can be done as follows. In order to obtain the correct
amplitudes in each layer, after every step of the recursion (4.37) the applied rotation
needs to be propagated down through the bottom of the stack according to

form=N—1...0  outer iteration from bottom to top (4.42)
T, =1 (4.43)
Ry = Ry S (4.44)
f()Tsz%-l.. N (4.45)

Ti=T1i Sm (4.46)
Ri=Ri- S (4.47)

Remark The defined Rijn is equal to the X,, in the Parratt formalism, and
equation (4.37)c is almost identical to the usual recursion in X [56, 55], apart from

the treatment of the phase factor. The second recursion equation in [56, 55] that yields
the amplitudes is replaced by storing the intermediate Sp,.

4.3.2 Roughness

For a detailed description of the implemented roughness models, we refer to the doc-
ument Refraction, reflection, and scattering from rough interfaces in theory/Rough-
ness.pdf.
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4.3.2.1 Tanh Profile

As in the scalar implementation, the analytical tanh interface profile is implemented
by replacing the Fresnel reflection and transmission coefficients in the transfer matrix

1+P, 1—Py
Sop = == = (4.48)
- 1-PFPy 1+ Py
to incorporate the analytical solution of the Helmholtz equation via
Sab _ 1/7?'(1b + PabRab 1/Rab - PabRab (449)

1/7?'(1b - PabRab 1/7-\>/ab + PabRab

Here, the roughness correction factor R is also a 2 x 2 matrix and is given by

\/tanhc {(7r/2)3/22@}

Rab = =Ry Ra (4.50)
\/tanhc {(7r/2)3/2 @&}
This expression is evaluated via the eigenvalue decomposition
tanhe (%) 0
Ry =Qp = Qb (4.51)
- 0 tanhe (A2 ) | =
@
tanhc( o/ A%
Ra™' =Qa . i ) Ql, (4.52)

tanhc (%)\’i )

where we have defined o/, = (7w/ 2)3/ % g, and the transformation matrix Q is the same

as in equation (4.19).
The case of zero magnetic field €, = 0 needs to be treated separately again, in
that case we have

\/tanhc (1/20400) 0

R, = - (4.53)
0 \/tanhc (1/2%04,)
S S 0
tanhc(1/20/,aq

R, ' = (1/2g30) (4.54)

tanhc(l/?igaa)
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4.3.2.2 Névot-Croce

The interface transition part of the transfer matrix is replaced with the expression

2 2
1 (1+P)exp—(;i—&) 22/2 (1—P)exp—<pb+pa) 22/2

2 (1—P)exp—<@+&)222/2 (1—|—P)exp—<p _&)222/2

n
&

a Y

(4.55)

that is the polarized equivalent of the scalar implementation. For brevity the indices
on the P, matrices are omitted in this section. In order to evaluate this matrix, we
need to compute the exponential of a matrix of the form

&

ab = (@i&y : (4.56)

This matrix can be rewritten as

|°
s

ab = Q + a (457)

]. — —
=5 |wtaato (Bob + Baba )| - (4.58)
—_—

=b/

Now the vector ¥ is a complex vector, that will be normalized according to

7
o (4.59)
yT .yl
and we have the new eigenvalue
Bap =0T -0 (4.60)

It must be noted, that this normalization is not based on the usual inner product with
a complex conjugate, but really only the squared elements of the vector. This is due to
the fact that the p-matrix is only squared and not conjugated. The vectors b and b”
should carry a 4, depending on which matrix is being evaluated, however, for clarity
we drop this sign. Consequently, we can now write the resulting matrix

1

b= 5 (%b + Bab6 - 5") ; (4.61)

2V

with ag, = ap + . This expression can easily be squared

2

|

(a2 + 8% + 20086 - ") (4.62)

(o/’; 16" - E”) . (4.63)

g R N
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The exponential of this can now be computed using the well-known eigendecomposition
of the second term. The eigenvalues are now +/” and the corresponding eigenvectors
are given by

[y

L (e L (e
u = 17 1/ 311 L2 = — 1/ ) (4'64)
2(07 +1) \bf] + ib} 2(1 =) \by + b))

such that we have the usual eigenvalue equation Qvi = ["v, with Q = (ﬂ , 1)72) The
inverse Qfl is given by

Q' = iy (4.65)
w')

1 1+ b 1 by —1
S . — . (4.66)
= V20 b 220 \b b

Putting this all together, we obtain for b # 0

2 exp o 0 . [expB’ 0 Al
- () - Vo Yoo
= = = 0 exp o 0 exp —f3

(4.67)

and for b =0

exXp — (p

—@)202/2: (expa” 0 ) ' (4.68)

0 exp o

For brevity, the factor 0,%/2 was neglected in o/ and 3”.

4.3.3 Reflection matrix and boundary conditions

In the current formalism, the reflection operator is directly computed by the imple-
mented iterative method and given by Ry. In order to start the backwards iteration
described in Section 4.3.1, one needs to impose the bottom boundary condition of no
reflected wave, i.e. Ry = 0. Furthermore, the iteration starts with pure polarization
states, i.e. Ty = 1, that isisubsequently rotated to the final transmitted polarization
state, by appilyingithe top boundary condition Ty = 1.
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4.3.4 Amplitudes for DWBA computations

The DWBA computations require all four amplitudes that belong to the 4 waves
traveling with different wave vectors separately. This requires the decomposition of

®; (2) =exp iPa (2 — zj—1)t; +exp —ipa (2 — zj-1)rj, (4.69)

into its eigenmodes. In order to achieve this, we again apply the eigenvalue decompo-
sition of pg, as it is also used in (4.51), where the transformation matrix is given by
?? and the eigenvalues are of course c; and c_ and we have

expipjz = Q- expilz-Qf (4.70)
~ [expicyrz O A A 0 0 R
:Q.( + ).QT+Q.< . ).QT (4.71)
0 0 0 expic_z
(10 (o0}
=expicyz@ - 00 - Q"+ expic_z(Q - 01 Q. (4.72)

This decomposition is valid unless the magnetic field vanishes. In the latter case, we
have

. . 10 ) 0 0
exXp ipPgz = eXpiC4 2 - + expic_z - . (4.73)
- 00 0 1

The resulting matrix can be written as a sum of two matrices

exp i&z = exp ichzQ + exp ic,zg, (4.74)
and the needed amplitudes are then given by

nt=T1-t Rit=T1r (4.75)

The matrices T7 and T, are computed via MatrixRTCoefficients::T1Matrix
and MatrixRTCoefficients::T2Matrix.

These vector amplitudes T1+ etc. are computed in MatrixRTCoefficients: :Tlplusl
etc.

4.3.5 Limiting case k — 0

This case is implemented in the same way as for the scalar case, that is described in
Sec. 2.2.2 of the BornAgain manual version 1.7.2. For clarity, we briefly summarize
the treatment here.

e One single layer: This is a trivial case, nothing needs to be calculated here as
the outgoing wave is equal to the incoming one. As a consequence, it means that
we have Ty = 1 and Ry =0
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e More than one layer: In that case the limit x — 0 is well defined. For x = 0, we
have Ry = —Tp = —1 and T; = R; = 0 for j > 0.

e k = 0 in intermediate layer: This case is not treated separately but automatically
covered by the solution also present for scalar computations. In KzComputation: : checkForUnderflow]]
a tiny imaginary part is added if the resulting value for x? is getting very small.

For a single layer, the correct computation of these conditions is checked in SpecularMagneticTest: :test_degenera

4.3.6 Test suite

The scalar amplitudes allow the computation of vector amplitudes according to

t 0
T,F =0 T, = 7 = Ty =0
0
R =0 R{:(r) R1:<) Ry =0
s 2=, =T 2

These relations allow to compare the amplitudes from a scalar computation to a
polarized result, in case there is no magnetization present. For two layers, consistency
between the scalar and polarized computation is checked in SpecularMagneticTest: :testZeroField]

4.3.7 Magnetic field in BornAgain

The z-component is afaik currently explicitly set conserved.
Imo this is bit funny, as Dmitry also remarked in Issue 2417

4.3.7.1 Magnetic field in the fronting medium

As previously described in [57], it is reasonable to assume that the incoming beam
penetrates the fronting medium of the sample assembly from a side. This results in &,
being preserved even when there is a non-zero magnetic field in the fronting medium.
To account for that in the calculations, one needs to replace k3, with k2, + 470 front
in equation 7?7, with pf.ons being the SLD matrix for the fronting medium. It is also
equivalent to subtracting the magnetic field of the fronting medium, B fn¢, from the
magnetic field of each layer, thus amending pas:

~/ _ m ~
Pm = —Wﬂ (B = Byront) -
This amendment also concerns the nuclear (non-magnetic) scattering length density:

ﬂln = Pn — Pn,front;

where py, frons is the nuclear SLD of the fronting medium.

TODO: Check this in the code

Further in the text we will omit the primes and handling of the fronting medium’s
properties, however, implying that both magnetic fields and nuclear SLDs are amended
in the way mentioned above.
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4.3.7.2 Magnetic field z-component conservation

In the framework of the problem, the sample is assumed to be infinite along the z
and y axes, all parameters being constant inside each layer. This is equivalent to the
requirement of translational invariance along these axes. On the other hand, magnetic
field is known to be divergence-free,

V.-B=0.

Both of these conditions result in the z-component of the magnetic field (that is, the
component normal to the sample surface), B,, being preserved in the whole sample
and fronting medium:

oB.
0z =0

4.3.8 Intensity and density matrix

The wave function in the ambient material is given by

@ (2) = expipoto + exp —iporo - (4.76)
Po Poro
4(2) @, (2)

Here ®; is the incoming wave in a given polarization state top and @, is the reflected
wave. The intensity measured on a detector is without polarization analysis given by

Ip = |8, [" = (2| 2,) (4.77)

This would allow for the direct computation of the reflected intensity if ¢y would
describe the incoming polarization state. In case of an arbitrary but pure state of the
incoming beam, the reflected wave can be described by a reflection matrix

®,(z) = R¥i(2), (4.78)

where E is a 2 x 2 matrix:

R= ("t "F (4.79)
o T4 T__

with its non-diagonal elements contributing to spin-flip reflections. If we consider the
intensities right a the topmost interface of the sample at z = 2y = 0, the phase factors
drop out and we find the relation

Therefore, as soon as R is known, it is trivial to perform a calculation for any desired
incoming polarization state. It is clear that (4.80) is a system of two equations with four
unknown variables. Hence if two pairs of incoming and reflected waves to, ro and t, 77,
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are known, the reflection matrix can be determined (if they are linearly independent).
Writing these four equations as a matrix

(ro,m0") = R (to, to') (4.81)

one can see that the inversion of this equation becomes trivial if the two incoming
waves are chosen such that they are in a + and — polarization state. If they are
chosen differently, inverting equation (4.81) corresponds to the rotation of the incoming
polarization vectors such that they become pure + and — waves.

If we perform polarization analysis, the analyzer will only pass a wave in the ®
polarization state. Hence the reflected wave needs to be projected onto this state to
obtain the measured intensity

In=|(2,R12:)|" = (as1R]2.) - (2R3 (182

Following [58], we introduce the density matrix f, (polarizer) for an arbitrary mixed

state of incoming beam and, correspondingly, f; (analyzer) for an arbitrary mixed
state passed through a polarization analyzer:

QZ%(&&'M fa=%(1+&-a). (4.83)

The beam polarization as well as analyzer direction and efficiency are described by the
Bloch vectors p,a € R3. |p| = 1 corresponds to some pure state of beam polarization,
while |p| < 1 is for a state mixture (partial polarization). The same holds for non-
perfect analyzers, where we call |p| the efficiency. ®

In order to compute the reflection coefficient for a mixed-state beam, equation
(4.82) needs to be rewritten in the density matrix formalism

(@

Here Tr denotes trace operation. ’@ f> <<I> f‘ and ‘ P; > <g ‘ are respective outer products

R W)« (@ |R|@:) = Tr (|25) (2| RY 0 ) (2| R). (4.84)

for the ®; and ®; pure states and coincide with the corresponding density matrices.
To generalize expression (4.84) to mixed states of the incoming beam and polarization
analyzer, one has to replace the explicit outer products with the density matrices f,, fo

that describe the polarizer and analyzer as defined in (4.83). This will automatically
take into account the averaging over all possible initial and final pure states of the
system. Therefore, the final expression for Ir reads

In="Tr (£ RfR). (4.85)

This expression should work for both a perfect and imperfect polarizer and analyzer.
It also seems to be consistent with Wildes [59, 60], this paper was recommended as
standard reference on this topic by Artur.

8In PolarizedSpecular, Sec. 5.1, Dmitry claims this treatment of a non-perfect analyzer is not
possible and suggests a different treatment. However i (rb) think that his argument is not correct.
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It needs to be noted that the limit |@| = 0 does not correspond to no polarization
analysis (i.e. a very common experiment without polarization analysis). Instead, if
no polarization analysis is performed, writing (4.77) in the density matrix formalism
yields

In=|&.]" = (%

R'R ) %> =Tr (@@@) , (4.86)
which corresponds to f, = 1.

TODO: can we show the equivalence between the Wildes approach and our density
matrix formulas?
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4.4 From old document “Reflectivity”

4.4.1 Parratt formalism

X = Pty (4.87)

X = €xp ipmdm Xom €XP ipmdm (4.88)

. 1= pmr1 + (1400 Pmr1) Xt

1+ pm Pmst + (1 = pi' 1) Xt

(1 + Xm> exp iPmdm
14+ Xt

gl = tm (4.90)

o Kentzinger et al. introduce structural (nuclear) roughness into this formalism by
adding Nevot-Croce factors to the operator (1 — p;llpmﬂ)

o [55] mention the numerical stability of this algorithm due to the strictly positive
imaginary parts in the phase factors

e Here X, is a 2 x 2 operator
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4.5 From old document “Stratified”

4.5.1 The split boundary problem

A numerically stable recursive solution of the split boundary problem for polarized
radiation has been proposed in [13], and summarized in notation closer to ours in [14].
Their argument can be further simplified as follows.

SCALAR CASE:
We consider layers a, b := a+1, v. The transfer matrix (2.46) obeys the recursion

Moy = Moy My, . (491)
With the conversion functions (2.48) and (2.49), we can derive a recursion for W:
Wap =W (Magpy M (W) . (4.92)

The per-layer transfer matrices M, are given; the W, shall be determined for a from
v—1to 0.
Once we have W, we can use

(Z ) = Wo, <(1)> (4.93)

to compute the reflected amplitude ry in the top (air/vacuum) layer. This backward
computation must then be followed by a forward computation of

(t“> = Moy, ! (1> . (4.94)
Ta To

THE FOLLOWING WAS OUTCOMMENTED:

However, determining the W,, is not a goal in itself; we shall only evaluate them
insofar as needed for computing Ultimately, we want to apply (4.95) to layers i = 0,
f = v, with r, = 0. Therefore, we only need to derive the t¢ and rt components of Wy,,
whereas the ¢tr and rr components are irrelevant. It turns out that this also holds for
the inner terms of the recursion (4.92): we only need the ¢t and rt components of the
intermediate Wy,.

NOW THE POLARIZED CASE

THE FOLLOWING WAS OUTCOMMENTED:

The homogeneous linear equation (4.23) can be reorganized as

(1) = () (499
L U

for whatever layers j, k. Following [14], we write matrix components as

th Wtr
W= | — =, (4.96)
K’I‘ wrr‘
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and similarly for matrix M of (4.23). Combining (4.23) and (4.95), we can express W
as function of M,

Mttt Mttt
wo = = = = , (4.97)
MTtMtt (MTT o MTtMtt Mt?“)

and conversely, Ml as function of W

M (W) =77. (4.98)
Now consider layers 0, a, b := a + 1. The transfer matrix obeys the recursion

Moy = Moq Map. (4.99)
With the conversions (4.97) and (4.98), we can derive a recursion for W:

Wop = W (M (Woa) Map) - (4.100)

Ultimately, we want to apply (4.95) to layers i = 0, f = v, with r, = 0. Therefore,
we only need to derive the ¢t and rt components of Wy,, whereas the tr and rr
components are irrelevant. It turns out that this also holds for the inner terms of the
recursion (4.100): we only need the t¢ and rt components of the intermediate Wy,
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5 Evanescent waves

5.1 Vanishing vertical wavenumber, evanescent case etc

Fragments from different sources...

5.1.1 Vanishing vertical wavenumber

The general solution of (2.10) will be a linear function of z:
di(z) = AV + A} 2. (5.1)

In BornAgain, such a linear wavefunction amplitude can not be handled by the form
factors, which are only defined in terms of plane waves with complex wavevector com-
ponents. The following cases are treated seperately:

e There is only one layer: this is a trivial case whithout any need to calculate wave
coefficients. The solution in the single layer is just the incoming/outgoing plane
wave.

o The top layer of a multilayer has kg = 0: the limit kg — 0 is well-defined and
the solution is given by Aar =—A; and Ali =0 for [ > 0.

o x; =0 for a layer with [ > 0: In this case x; will be given a very small imaginary
value, representing a slight absorption. However, this should be inconsequential
because the index of refraction of non-vacuum layer always contains an absorptive
component.

5.1.2 Opaque layers and evanescent waves

TODO: Rework this fragment (ingested 29may23 from ba-intern/theory/Stratified.tex).}]

For incident angles below the critical angle a;; < a, (also at interfaces inside the
sample), the k.-component of the wave vector turns imaginary. This situation then
corresponds to an evanescent wave. As a consequence, the phase factor § (2.29) turns
real and describes the exponential decrease of the amplitudes ¢;, 7; in the corresponding
layer. For large layer thicknesses, this means that § rapidly approaches zero, and
its inverse becomes very large. This leads to an increasingly ill-conditioned transfer
matrix 77, until, at some point, both quantities underflow or overflow, leading to
invalid numerical results.

BornAgain June 12, 2023 5:1

{Seva}

{Snokz}

{{Ephilz}}

{Sevawa}



As the simulation approaches this singular situation, the amplitudes t; and r; will
rapidly increase towards the top of a sample and potentially overflow at some point
before the computation reaches the top layer. Intuitively, this can easily be understood
as follows. As we impose the boundary condition t, = 1, r, = 0 in the substrate for
incident angles below the critical angle with 7" = 0, R = 1, this means, that we must
find tg — oo. Obviously, this cannot be implemented numerically in a sane manner.

In order to detect and handle this over/underflow, BornAgain checks for an over-
flow of t;.

It must be mentioned though, that this algorithm still fails if a very thick layer is
encountered. This will lead to the immediate underflow of § and hence to an overflow
of =1, This means, that the transmission of a single layer is within the numerical
precision zero, but the mathematical formulation applied cannot handle this corner
case and the computation still crashes. Therefore, the only way to circumvent this
problem is by restarting the computation from the current layer by reapplying the
boundary condition ¢; = 1,7; = 0 and setting all amplitudes in the layers below to
Zero.

5.1.3 Flux, evanescent waves

We write
k=K +ir" (5.2)

for the decomposition into a real and an imaginary part. Accordingly, full wavevectors
have the decomposition

kT = k¥ + ik =k + (¢ +ir)z. (5.3)

Per (1.30), we have 8 > 0 and § < 1, from which it follows that x” always has the
same sign as K’
After these preparations, we can compute the flux (1.9):

3(r) = APt Gk 4 442 o2 g
(5.4)
+ |:A_A+*e_2ili,(z_zl)(k” — 7;[{',”2) + C.C.] .

The first two terms describe the exponential intensity decrease due to absorption, while
the oscillatory term in square brackets is responsible for waveguide effects in layers
with finite thickness. The flux can also be written in terms of the one-dimensional
wavefunctions ¢ (z):

I(r) =[¢*(2) + o~ ()] - K

5.5
+ [|¢+(z)\2 K — ¢~ (2)] K + 2Im(¢~ (2)¢* (2))K" | - 2. (5:5)

The first term denotes the horizontal component of the flux and can be seen to consist
of the product of the particle density at position z and the wavector k. The 2-
component consists of the difference between the up- and downward travelling wave
components and an extra term that encodes the interference between them.
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In the special case of a purely imaginary k;, the flux becomes:
J(r) = [k + 2Im(A~ AT")K"z. (5.6) {{EJ3}}

This flux consists of two clearly distinct parts: an evanescent wave, travelling hori-
zontally and a vertical component that is independent of the z position. The vertical
component is a necessary degree of freedom to fulfill the boundary conditions at the
layer’s top and bottom interfaces. In the case of a semi-infinite layer, the vertical
component becomes zero and all incoming radiation at the top of the layer undergoes
total reflection.
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6 Instrument simulation

{SInstr}
6.1 Incoming beam and resolution

@ \ |t0 be written ...

{SBeam}
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%

Figure 6.1: Experimental geometry with a two-dimensional pixel detector.

6.2 Detector images

To conclude this chapter on the foundations of small-angle scattering, we shall derive
the geometric factors that allow us to convert differential cross sections into detector
counts. We shall also discuss how to present data on a physically meaningful scale.

6.2.1 Pixel coordinates, scattering angles, and q components

We assume that scattered radiation is detected in a flat, two-dimensional detector
that generates histograms on a rectangular grid, consisting of n - m pixels of constant
width and height, as sketched in Fig. 6.1. This figure also shows the coordinate system
according to unanimous GISAS convention, with z normal to the sample plane, and
with the incident beam in the xz plane. The origin is at the center of the sample
surface. We suppose that the detector is mounted perpendicular to the x axis at a
distance L from the sample position. The real-space coordinate at the center of pixel
(4,7) is (L,vi, ). Each pixel has a width Ay and a height Az. BornAgain requires
a full parametrization of the detector geometry to correctly perform the affine-linear
mapping from pixel indices i, j to pixel coordinates x;, y;; see the rectangular detector
tutorial.

Since the differential scattering cross section (1.31) is given with respect to a
solid-angle element df2, we need to express the scattered wavevector k; in spherical
coordinates, using the horizontal azimuth angle ¢ and the vertical glancing angle
as. The projection of («g, ¢¢) into the detector plane (y, z) is known as the gnomonic
projection. From elementary trigonometry one finds

y = Ltandy,

6.1
z = (L/cos¢s)tan as. (6.1

Fig. 6.2 shows lines of equal ay, ¢¢ in the detector plane. To emphasize the curvature of
the constant-ay lines, scattering angles up to more than 25° are shown. In typical SAS
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Figure 6.2: Lines of constant af (red) or ¢¢ (blue) in the detector plane, for a planar detector
at distance L from the sample. The black dot indicates the beamstop location for the central
incident beam (SAS geometry, k; = ).

or GISAS, scattering angles are much smaller, and therefore the mapping between
pixel coordinates and scattering angles is in a good first approximation linear. Of
course BornAgain is not restricted to this linear regime, but uses the exact nonlinear
mapping (6.1).

To determine the scattering vector q;; that corresponds to a pixel (4, j), we need
to express the outgoing wavevector k¢ as function of y and z. This can be done either
by inverting (6.1) and inserting the so obtained as(y, z) and ¢¢(y) in

COS Qi COS P
ki =K | cosassing; |, (6.2)

sin oy

or much more directly by using geometric similarity in Cartesian coordinates. The
result is rather simple:

% L
k——2b |y, (6.3)
VL2 +y? + 22
z

The transform (6.6) between pixel coordinates y, z and physical scattering vector
components gy, ¢, is nonlinear, due to the square-root term in the denominator of (6.3).
For y, z < L, however, nonlinear terms loose importance.

The left detector frame in Fig. 6.3 shows circles of constant values of +¢,. For
given steps in ¢, the distance between adjacent circles increases towards the detector
center. From ?? and (6.3), one finds asymptotically for y, 2 — L that g, goes with the

BornAgain June 12, 2023 6:3

{Fconstalphi}

{{Ekf_by_angle}}

{{Ekf_by_pixell}}



0.4

0.2

z/L
z/L
(e)

-0.2

-0.4

I
-04 -0.2 0 0.2 0.4 -04 -0.2 0 0.2 0.4
y /L y/L

Figure 6.3: Lines of constant g, (left), g, or ¢, (right), in units of the incident wavenumber
K =27/A, for a planar detector. SAS geometry as in Fig. 6.2.

square of the two other components of the scattering vector,

G . Y424t 6.4
K 212 = 2K? (6.4)

Therefore, under typical small angle conditions ¥y, z — L the dependence of the scat-
tering signal on ¢, is unimportant: one basically measures v(q) ~ v(0,¢y,q.). The
exception, for sample structures with long correlations in z direction, is illustrated
in Fig. 6.4.

As anticipated in (6.4), the other two components of q are in first order linear in
the pixel coordinates,

2 2
QG _ Y y* +2
I (1= :
K L< 212 ) (6:5)

and similarly for ¢,. The nonlinear correction terms lead to the pincushion distortion
shown in the right detector frame in Fig. 6.3.

Since pixel coordinates are meaningful only with respect to a specific experimental
setup, users may wish to transform detector images towards the physical coordinates
¢y and ¢.. As shown in Fig. 6.5, this would yield a barrel-shaped illuminated area in
the gy, ¢. plane.

To summarize this section, the wavevector q;; can be determined from the pixel
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Figure 6.4: Simulated detector image for small-angle scattering from uncorrelated cuboids
(right rectangular prisms). The incoming wavelength is 0.1 nm. The prisms have edge
lengths L, = L, = 10 nm; the length L, in beam direction, is varied as shown above the
plots. The circular modulation comes from a factor sinc(q,L,/2) in the cuboid form factor,

with ¢, given by (6.4). {Fdetbox}

indices through the following steps:

(i,4)

4 calibrate of origin, then employ affine-linear mapping

(y, 2)
4 use (6.3) (6.6) {{Eqalgo}}
k¢
1 use (?7)
q

Transforming detector images from pixel coordinates into the ¢, ¢. plane is not
implemented in BornAgain, and not on our agenda. We would, however, like to hear
about use cases.

When simulating and fitting experimental data with BornAgain, detector images
remain unchanged. All work is done in terms of reduced pixel coordinates y/L and z/L.
Corrections are applied to the simulated, not to the measured data.

...show how to plot ¢ grid on top of detector image ... I

6.2.2 Intensity transformation

The solid angle under which a detector pixel is illuminated from the sample is in linear

approximation
0 Ay A
AQ) = cos af Aag Ags = cos ag M Ay Az = cosPag cos® ¢ 2Y2z (6.7) {Eqalgo}
Ny, z) L2
Altogether, the expected count rate in detector pixel (i, j) is proportional to
d
I;j = cos’ag cos® ¢y d%(q@-j), (6.8) {{EItrafo_cos}}
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q./ K

Figure 6.5: The outer contour of the blue and red grid shows the border of a square detector
image after transformation into the physical coordinates gy, ¢,. The blue and red curves
correspond to horizontal and vertical lines in the detector.

{Fconstp}
where we have omitted constant factors L=2, Ay and Az. Using pixel coordinates
instead of angles, this can be rewritten as
y? + 22 32 4o
Ij; = (1 + LQ) 19 (ai(y,2)). (6.9) {{EItrafo_pix}}
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